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ABSTRACT
To increase trust in systems, engineers strive to create explanations
that are as accurate as possible. However, if the system’s accuracy
is compromised, providing explanations for its incorrect behavior
may inadvertently lead to misleading explanations. This concern
is particularly pertinent when the correctness of the system is
difficult for users to judge. In an online survey experiment with 162
participants, we analyze the impact of misleading explanations on
users’ perceived and demonstrated trust in a system that performs
a hardly assessable task in an unreliable manner. Participants who
used a system that provided potentially misleading explanations
rated their trust significantly higher than participants who saw the
system’s prediction alone. They also aligned their initial prediction
with the system’s prediction significantly more often. Our findings
underscore the importance of exercising caution when generating
explanations, especially in tasks that are inherently difficult to
evaluate. The paper and supplementary materials are available at
https://doi.org/10.17605/osf.io/azu72

CCS CONCEPTS
• Human-centered computing → Empirical studies in HCI; •
Software and its engineering→ Extra-functional properties.
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1 INTRODUCTION
The explainability-trust hypothesis [36] claims that “Explainability
is a suitable means for facilitating trust in a stakeholder.” If we
better understand how a system produces its outputs and the ex-
planation for a given output fits with our expectations of a good
decision, this explanation presents a reason to trust the system.
Although this seems intuitively appealing, especially for opaque
machine learning (ML) systems (e.g., [1, 22, 47]), recent psychologi-
cal studies indicate that explanations do not necessarily facilitate
trust [14, 15, 37, 53]. Considering the overall landscape, some stud-
ies find no statistically significant correlation between explanations
and trust [17, 54], while others demonstrate that trust increases
with seemingly random or placebo explanations [4, 8, 23, 42]. Em-
pirical evidence supports that explanations aid human cognition in
identifying system failures, promoting what is termed calibrated
trust [57]. However, a counter-narrative warns against excessive
reliance on machine explanations, as users may endorse AI results
despite errors [4, 61].

Our research focuses on this critical gap: a lack of consensus on
the impact of explanations on trust in intelligent systems, despite
extensive scholarly investigation. While the initial contradictions
within these mixed findings might appear perplexing, we introduce
a theoretical framework that aims to reconcile the apparent dispari-
ties, and more importantly, sheds light on some unexplored aspects
of the explainability-trust relationship. Specifically, we examine
the effect of explanations on user trust as a function of several
variables. We believe that the different results observed in different
research studies regarding the effect of explanations on trust can
be attributed to differences in the experimental settings, namely
different values for the following variables.

• Reliability of the system: Most ML systems are not per-
fect and may produce incorrect outputs. Trust is especially
important in such situations. Explanations can help users
understand whether or not a system performed reliable rea-
soning to come up with an output. On the other hand, users
may not trust a system even if it solves a task perfectly.
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• Genuineness of an explanation: Also known as the fi-
delity of an explanation, refers to the accuracy, faithfulness,
or truthfulness of the explanation, i.e., the extent to which
the explanation reflects the genuine reasoning process of a
machine learning (ML) system.

• Assessability of the task: If a user can easily differentiate a
correct from an incorrect output, an explanation is unlikely
to increase trust in the system. However, if a user is uncertain
about the correct output, explanations may justify system
outputs and, thus, increase trust in the system.

• Explanation fit: Explanations can come in different forms.
If a user cannot comprehend the explanation or cannot use
it to evaluate the system, the explanation might not change
their trust in the system.

• Measurement of trust: Several studies suggest that per-
ceived and demonstrated trust may not be correlated [40,
51, 60, 69]. Although users say that they trust a system (i.e.,
perceived trust), they may not act accordingly (i.e., demon-
strated trust).

Some of these factors have already been identified and controlled
in previous experiments in the literature. However, from an engi-
neering point of view, it is most interesting to study the relationship
between explanations and trust in a context where:

(1) A system is unreliable: It may produce incorrect outputs.
(2) An explanation is misleading: It is designed in a way that

best justifies the output of a system (regardless of whether
the output is correct or not).

(3) A task is hardy-assessable: A user cannot easily differ-
entiate between a correct and an incorrect output of a per-
formed task. Nevertheless, the cognitive complexity of a
task for humans differs from its level of assessability. For
instance, solving mazes may pose high cognitive demands,
yet verifying the correctness of a solution remains relatively
straightforward for humans. On the other hand, optimizing
moves during a chess game, particularly for non-expert play-
ers, can introduce both complexity and hard assessability.

While points (1) and (2) have been individually examined in
previous studies, they become especially interesting in a combined
exploration, particularly when considered alongside point (3). This
scenario addresses the challenge of providing faithful explanations
due to opaque models—instead, explanations based on surrogate
models are employed to justify the system’s reasoning. Simultane-
ously, we deal with a system that may produce incorrect results
(i.e., an unreliable system), in situations where human users find it
challenging to evaluate the correctness of the system’s output (i.e.,
a hardly assessable task)

In this paper, we investigate an unreliable system (i.e., a system
with possibly incorrect predictions) solving hardly assessable tasks.
A variant of the system provides additional explanations that are
supposed to substantiate the system’s predictions. Consequently,
the explanations are misleading since they justify the system’s
output without knowing whether it is correct. In an online survey
experiment with 162 participants, we analyze the impact of such
misleading explanations on the perceived and demonstrated trust
of users. We investigate the following research questions:
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Figure 1: Assessability-Genuineness Grid

RQ1: Do misleading explanations in hardly assessable tasks in-
crease the probability that users align their prediction with
that of an intelligent system?

RQ2: Do misleading explanations in hardly assessable tasks in-
crease the confidence of user predictions?

RQ3: Do misleading explanations in hardly assessable tasks in-
crease users’ perceived trust?

Although our (artificial) system was incorrect in 50% of the cases,
participants using the variant with misleading explanations (i.e.,
the treatment group) aligned their initial prediction significantly
more often with the prediction of the system, were significantly
more confident about their final prediction, and rated trust in the
system significantly higher when compared to participants of the
control group who did not receive any explanations.

Based on the results, we conclude that explanations, even if they
explain incorrect behavior, can induce unwarranted trust. In our
experiment, a loose relation of the explanations to some underlying
data was enough to create this effect. Especially with the rise of
conversational AI technologies, we assume that engineers will be
able to provide even more convincing explanations in the future.
Our findings underscore the importance of exercising caution when
generating explanations, particularly in cases involving tasks that
are inherently challenging to assess. Providing explanations in such
contexts may inadvertently promote overreliance and engender
unwarranted trust in the system.

2 BACKGROUND AND RELATEDWORK
More recently, there has been a growing integration and utiliza-
tion of AI and other highly complex systems across various do-
mains [2, 13, 28, 56, 63]. This urged to raise the question “Can
machines be trusted?” [31, 51]. Amidst this context, the field of
Explainability has emerged as a means to enhance the comprehensi-
bility of AI and other complex systems for human users [11, 12, 21].
Notably, various application domains have already begun to in-
corporate forms of explainability within their complex systems
[22, 29, 58, 64]. However, as discussed in section 1 we argue that the
diversity of outcomes in the trust-explanation relationship stems
from variations in multiple factors. In particular, our focus is to
investigate the concept of trust in situations where users are con-
fronted with potentially misleading explanations in the context of
unreliable systems especially when performing a hardly assessable
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task. In this direction, as shown in Figure 1, we can delineate four
distinct quadrants based on the levels of Assessibility and Genuity
of tasks and explanations. We posit that the diversity of outcomes
observed in previous studies could potentially be attributed to the
specific zone within which each study falls. Furthermore, we em-
phasize the significant importance of Quadrant 4 (Q4), which has
largely remained overlooked in the existing literature, and is the
main focus of this work.

Quadrant 1 and 3 (Q1,3): In situations where users can easily
assess the accuracy of a machine’s decision or prediction, trust
predominantly hinges on the system’s overall performance. This
theory helps to elucidate the results of studies such as [54, 69]
belonging toQ1, wherein the effect of explanations on trust is found
to be negligible1. A plausible assumption is that individuals tend to
bypass explanations when the judgment process is straightforward
and they perceive the system to work effectively[59]. This rationale
finds support in the study conducted by Bansal et al. [4] where
participants claimed that theymostly ignored AI in easily assessable
tasks (the sentiment analysis) with up to tripled ratio with respect
to more hardly assessable tasks in that study (the LSAT question
answering). Furthermore, this quadrant effectively accounts for
the perplexing outcomes observed in studies that indicated that
explanations could potentially diminish trust [4, 57, 61, 62, 65].
In fact, for tasks characterized by easy assessability, explanations
could help users identify errors within the model, consequently
mitigating general trust levels or excessive reliance. For example,
when the explanation revealed to the participant that the correct
classifications of the wolf pictures are only due to snow in the
background [57], their trust in the system decreased (which, in
turn, led to increased so-called calibrated trust) [25]. This behavior
can also be expounded through the lens of cost-benefit frameworks
from behavioral economics [38], as adopted by Vasconcelos et al.
[65] to elucidate how individuals interact with AI predictions and
explanations. They contend that overreliance materializes when
the cognitive costs associated with processing an explanation and
executing an AI task are nearly equal and both entail non-trivial
costs. Quadrants Q1 andQ3 residewithin a cost-related spacewhere,
due to the cognitive simplicity of the AI task, the processing task
for explanations is either equally effortless or less demanding. In
such circumstances, a prudent human strategy would likely involve
disregarding the explanation [8, 65].

Currently, there are a limited number of studies within the litera-
ture that correspond to Q3. Nevertheless, the arguments discussed
above remain applicable in this context, postulating that the impact
of explanations on trust in Q3 would be akin to that of Q1, particu-
larly when the system is performing well. However, Q3 introduces
a different dynamic compared to Q1; a potential vulnerability sur-
faces when the system generates incorrect outcomes. In such cases,
a misleading explanation might possess the capability to rationalize
these erroneous behaviors. It may lead users to experience a dimin-
ished loss of trust than initially anticipated despite recognizing the
system’s inaccuracies. This phenomenon is exemplified in the find-
ings of the study by Chu et al. [17], where they observed that faulty

1Please note that [54] involved multiple experiments spanning various conditions. we
considered the experiment with the condition of “apartment price prediction given
only two features ” as the one that is easily assessable.

explanations did not significantly diminish trust. This suggests that
users might be more forgiving of a system’s perceptible failures if
the explanations provided are skillfully persuasive.

Quadrant 2 and 4 (Q2,4): Q2 introduces a realm of uncertainty,
encompassing tasks carried out by intelligent systems that inher-
ently possess a high degree of uncertainty, making it challenging
for human users to attain definitive assurance regarding the out-
comes. Numerous studies in the literature are located within this
quadrant [9, 37, 39, 42, 45], examining the relationship between
explanations and trust. These studies often involve experiments re-
volving around prediction and recommendation tasks, where users
(and the machine itself) invariably grapple with a certain degree
of uncertainty in the results. In this context, since users cannot di-
rectly assess system performance, their trust in the system becomes
influenced by additional factors such as explanations. This phe-
nomenon can elucidate the results of numerous studies that have
detected a positive correlation between explainability and trust, or
even a tendency toward overreliance [54]. For instance, Poursabzi-
Sangdeh et al. [54] conducted a study wherein participants exposed
to conditions involving transparent models exhibited, on average,
less deviation from the models’ predictions (composed of correct
and wrong predictions) compared to participants in conditions in-
volving black-box models. This unexpected finding contradicted
their initial design assumptions, which presumed that participants
exposed to a transparent model would be more adept at detecting
and rectifying significant errors, compared to those exposed to a
black-box model. Though not explicitly articulated in their paper,
this finding points to overreliance and implies that participants in
the transparent model condition followed the system’s prediction
regardless of whether such predictions were accurate or erroneous.

Notably, the impact of external variables on trust extends beyond
explanations. This is evident in amultitude of studies demonstrating
that even exposing the accuracy or confidence level of a machine’s
prediction can yield a substantial effect on trust formation [9, 42, 68].
In essence, when users are uncertain about system performance
due to the hard assessability of a task, they are likely to employ
alternative strategies and heuristics to attain a degree of certainty
[8, 65]. Research has shown that individuals approach explanations
and trust differently, leading to an explanation-trust relationship
that is contingent on individual characteristics, expertise, cognitive
biases, and automation bias or aversions, etc. [3, 18–20, 35, 44, 46,
60]. For example, Schaffer et al. [60] showcased that the explanation
exerted an influence solely on individuals who reported very low
familiarity with the task at hand. This underscores the complex
interplay between explanation features, user characteristics, and
the intricate process of trust formation.

We propose that the effects of external factors are more pro-
nounced within Q2 and Q4 due to the inherently challenging nature
of task assessability, which amplifies the uncertainty experienced
by users. Nonetheless, there are instances of studies within Q2 that
have not reported a significant impact of explanations on trust. This
phenomenon can be interpreted in two ways. Firstly, if the level
of uncertainty surpasses a certain threshold, users might exhibit
a behavior characterized by a refusal to engage in attempting to
comprehend the system and its underlying model, consequently
leading to the disregard of the provided explanation. Secondly, the
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Figure 2: Experiment Procedure

absence of impact observed in certain studies may be attributed to
the specific measure of trust employed. Specifically, some studies
only report perceived trust without considering the demonstrated
trust. Nevertheless, there is a consensus within the research commu-
nity that perceived trust might not be the most accurate indicator
of how users truly rely on explanations [40, 51, 60, 69].

Lastly, Q4 represents a relatively underexplored area in the lit-
erature, where users encounter a scenario in which a task is diffi-
cult to assess while presented with a misleading explanation. The
arguments established for Q2 remain valid in this quadrant, too:
People are more likely to depend on external factors when deciding
whether to trust a system due to the difficulty of evaluating the
accuracy of the system. However, consequently, in Q4, the risk of
encountering a persuasive explanation that inadvertently conceals
errors and vulnerabilities of the artificial system is heightened. In
this context, a pertinent question arises: How does such a mislead-
ing explanation impact the user’s trust?

In this study, we undertake a novel exploration by designing
an experiment that specifically examines the nuanced relationship
between the hardly assessability of a task and the potentially mis-
leading nature of an explanation in shaping the establishment of
trust particularly when the system is unreliable.

3 STUDY DESIGN
In our experiment, we introduced an ML-based system named SAL3
(Smart Automatic Labeling System) that can solve binary classifica-
tion tasks on various datasets. Tomitigate theHawthorne effect [49],
we refrained from disclosing the primary focus of the study, i.e.,
investigating the effect of misleading explanations in the context
of hardly-assessable tasks and unreliable systems. Our main goal
was to replicate the typical use of ML systems in everyday life. As
a result, participants were informed that their involvement was
focused on contributing to the manual annotation of a large dataset,
which is essential for the future development of SAL3. Furthermore,
participants were informed that SAL3 assists them in this process by
offering its classification suggestion; however, the participant must
make the final decision for each classification task. We adopted a
between-subjects design in which participants were randomly as-
signed to perform classification tasks for two of the three available
datasets. This design choice was implemented to avoid the effects
of fatigue and to reduce the likelihood of participants dropping

out. The participants remained anonymous and our local university
regulations did not require a formal ethics review for the study.

All participants completed a total of eight classification tasks,
with each dataset consisting of four tasks. Participants were ran-
domly assigned to either the treatment group, in which tasks were
presented with the SAL3 prediction accompanied by a misleading
explanation, or the control group, in which tasks were presented
with only the prediction.

Participants. We recruited a total of 261 participants for this
study by utilizing our professional networks as well as various re-
cruitment channels such as a faculty-wide newsletter. We raffled off
two 25e Amazon gift cards among the participants who completed
the survey2. Following a stringent screening process, we excluded
91 incomplete responses, 6 instances where participants failed an
attention check, and 2 surveys completed in less time than the one
percent percentile of all participants. Ultimately, our study was
conducted with a final sample size of 162 participants.

SAL3. The primary objective of this study is to explore the effect
of misleading explanations of ML-based systems in tasks that are
difficult to evaluate, with a particular focus on the situation where
the system is unreliable. Considering that the accuracy of a system
that generates predictions for hardly assessable tasks is difficult
to evaluate for users, the performance of the underlying system
is inconsequential for this experiment, while the quality of the ex-
planations remains paramount. To generate unreliable predictions
and to create a balance between false and correct predictions, we
use a random classifier instead of a full-featured ML system. We
have further developed an algorithm that generates misleading but
plausible explanations for these random predictions.

Procedure. Figure 2 provides an overview of the experimental
procedure. First, participants answer demographic questions, re-
view the task description, and are then randomly assigned to three
of two datasets and either the Control or Treatment group. Each user
then completes 4 tasks for each of the two datasets. Accordingly,
each participant repeats Steps 3 to 5 (see Figure 2) eight times. In
Step 3, participants need to solve a classification task based on the
provided information and are asked to indicate how confident they

2Email addresses were collected in a separate survey with no way to associate email
addresses with survey responses.
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Table 1: Distribution of SAL3 predictions and outcomes for four cases in each dataset. Each dataset comprises four distinct cases,
with the second column representing the predictions generated by the SAL3 model for each case. The selection of cases ensures
an equal distribution of positive (low risk, rain, safe water) and negative (high risk, no rain, unsafe water) predictions. Similarly,
the third column indicates whether these predictions align with the actual outcomes, maintaining an equal distribution of
correct and incorrect predictions. The final column specifies the explanation provided to the participants for each case.

Dataset Prediction Correctness Explanation Type

Stroke

low risk of having a stroke true feature-based
high risk of having a stroke false counterfactual
low risk of having a stroke true feature-based
high risk of having a stroke false counterfactual

Rain

rain on the following day true counterfactual
no rain on the following day true feature-based
rain on the following day false counterfactual
no rain on the following day false feature-based

Water

water is safe to drink true counterfactual
water is not safe to drink true feature-based
water is safe to drink false feature-based
water is not safe to drink false counterfactual

are in their prediction (initial confidence measured on a 4-point Lik-
ert scale). In Step 4, the control group only sees the SAL3 prediction
without explanation whereas the treatment group is also given an
explanation for the prediction. In Step 5, participants are reminded
of their initial prediction as well as the SAL3 prediction. Following
the requirements for evaluating demonstrated trust formulated by
Miller [51], users are explicitly asked whether they want to keep
or change their initial prediction. Participants are then asked to
rate their confidence in their final prediction (final confidence). Af-
ter completing all eight tasks, participants are asked to answer a
questionnaire designed to measure their perceived trust.

Datasets. We chose three datasets that allowed us to create
difficult classification tasks and replicate a realistic use case for a
modern ML system. The use cases are stroke prediction, rainfall
prediction, and water quality prediction. We chose these problems
to encourage engagement, as people have at least some, though
very limited, understanding. We obtained the following datasets
from kaggle.com:

• In the Stroke dataset each observation consists of ten health-
related features and a label that indicates either high or low
stroke risk.

• The Rain dataset contains about ten years of daily weather
data from various locations in Australia. The target variable
is “rain tomorrow”, which indicates the probability of rain
tomorrow based on the current day’s data. To not overtax
the people, we only considered 9 out of 23 features.

• The Water dataset consists of water quality metrics (e.g.,
the concentration of solids per liter) for 3000 different water
sources that indicate potability.

To enhance participant understanding, short and general feature
descriptions were included as drop-down buttons for all datasets.
This approach allows participants, regardless of domain knowledge,

to make more informed choices while maintaining the inherently
challenging nature of the tasks.

Case Selection. All participants in the treatment and control
groups experienced the tasks in the same order and were presented
with the same model predictions (plus an explanation in the case of
the treatment group). To ensure that the tasks were hardly assess-
able we selected them manually. To do so, we randomly sampled
100 cases per dataset and used SAL3 to generate random predictions
and misleading explanations (as described in Section 3.1). After-
ward, we manually selected four cases from each dataset according
to the following criteria:

• We aimed to avoid cases that were too clear-cut, for example,
cases in which extreme values gave clear indications for the
correct prediction.

• As shown in the Prediction column of Table 1, we orches-
trated the selection of cases to achieve an even distribution of
instances where SAL3 suggests either a positive or negative
classifier.

• As represented by the Correctness Column of Table 1, we
structured the case selection to achieve an unreliable system
(50% accuracy), but with a balanced distribution of instances
where SAL3’s predictions align with or deviate from the
actual prediction in the dataset.

3.1 Misleading Explanation Generation
SAL3 can generate two types of explanations for a random pre-
diction for a particular sample: a feature-based explanation and a
counterfactual explanation. Both explanation types explain a pre-
diction by relating it to “similar” cases from the training dataset.

As illustrated in Figure 3 (left), the feature-based explanation pri-
marily presents the ratio of similar cases with the same prediction
and the features with similar values compared to the sample. How-
ever, if the ratio of similar cases falls below a certain threshold, in

https://www.kaggle.com/datasets/fedesoriano/stroke-prediction-dataset
https://www.kaggle.com/datasets/jsphyg/weather-dataset-rattle-package
https://www.kaggle.com/datasets/adityakadiwal/water-potability
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SAL3 predicts that this person has a low risk of having a 
stroke because our records show that 86.36% of other 
people with similar values for the most influential features 
listed below are also at a low risk of having a stroke.

Gender: Female
Age: 28 years
Heart disease: No
Ever married: Yes
Residence type: Rural
Avg. glucose level: 83.66 mg/dL
Smoking status: never smoked

SAL3 predicts that it will rain on the following day 
because if the values for the critical features below were 
different, then the system would have predicted that it 
will not rain on the next day.

Wind Gust Direction: SSE
Wind Gust Speed: 26 km/h
Rain Today: Yes

Figure 3: An example of a feature-based explanation (left) and a counterfactual explanation (right)

our case, less than 60%, the feature-based explanation might not be
very persuasive. In such cases, the algorithm resorts to generating
a counterfactual explanation [66], shown in Figure 3 (right), which
enumerates the features of the sample that deviate from those of
the most similar cases, highlighting that altering the values of these
features could potentially lead to a different prediction.

To determine the most similar cases, the algorithm compares the
number of similar features between each case in the training data
and the features of the sample. Categorical features are considered
similar if the values are equal. Numerical features are considered
similar if the normalized difference between the values is below a
certain threshold. Further details and metrics are provided in Sup.
1. The set of most similar cases is then just the set of cases with the
largest number of similar features.

We note that neither of these explanations is based on the ac-
tual reasoning of SAL3, which is a random classifier that does not
consider any feature whenmaking decisions. Even though the infor-
mation provided in the explanations is not erroneous or fabricated,
the explanations are still misleading because they are incomplete
to draw a comprehensive understanding. This is because they do
not denote the number or proportion of excluded cases (i.e., the
count of most similar cases in the entire dataset). Furthermore, the
interpretations lack clarity. For instance, in the feature-based ex-
planation, the listed features are attributed as the most influential,
however, while a high ratio might imply a correlation between these
features and the particular classification, it is not substantiated by
conclusive evidence.

3.2 Hypotheses
Given our experiment, we formulate five hypotheses to operational-
ize and investigate our research questions. In the context of RQ1,
our first hypothesis posits that when there is a high uncertainty
and limited user knowledge, individuals are more likely to rely on
external sources, such as explanations, to form a general percep-
tion of the system and determine their trust in it. Accordingly, the
presence of a persuasive explanation is expected to be effective in
convincing users to accept the system’s output, regardless of its
accuracy. Therefore, we formulated Hypothesis 1 (H1) as follows.

H1: Participants using a system that provides misleading expla-
nations align their prediction with the system’s prediction

more often than participants using a system that provides
no explanation.

Moreover, within the scope of this research question we are in-
terested in examining how users’ confidence in performing a task
could potentially interact with the effect of the explanation. Our
second hypothesis theorizes that, when users exhibit very low con-
fidence in their own task performance, it indicates that the task
appeared more challenging to them compared to users with higher
confidence levels. Consequently, those with low confidence are
more susceptible to being swayed by a misleading explanation and
are more inclined to follow the system’s decision. Hypothesis 2
(H2) is articulated as follows.
H2: The effect of misleading explanations on the probability that

participants align their prediction with the system’s predic-
tion is greater when participants are less confident in their
initial prediction.

In RQ2, we aim to examine how amisleading explanation impacts
the final confidence of participants when performing tasks that are
difficult to assess. We hypothesize that a misleading explanation can
boost participants’ confidence in their final decisions. We formulate
our third hypothesis (H3) as follows.
H3: Participants using a system that provides misleading expla-

nations are more confident in their final prediction than
participants using a system that provides no explanation.

We further hypothesize that misleading explanations could am-
plify the influence of the confirmation bias, the tendency of decision-
makers to give more weight to information that confirms a precon-
ceived hypothesis[52, 67]. To answer this question we first need to
evaluate if participants suffer from confirmation bias. Therefore,
the next hypothesis (H4.1) is expressed as follows.
H4.1: Participants are more confident in their final prediction if

the system prediction is equal to their initial prediction.
Accordingly, H4.2 reads:

H4.2: The effect of the confirmation bias is larger for participants
using a system that provides misleading explanations than
for participants using a system that provides no explanation.

Lastly, in RQ3, we hypothesize that when users face uncertainty
due to the challenging nature of the task, the presence of explana-
tions may create an impression of sophistication and proficiency
even within a potentially unreliable system. This leads users to

https://osf.io/pb59x
https://osf.io/pb59x
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perceive the system as intelligent, even if they cannot fully com-
prehend its predictions and the accompanying explanations. Con-
sequently, users are more likely to place and express trust in the
system. Specifically, Hypothesis 5 (H5) is stated as follows.

H5: Participants using a system that provides misleading ex-
planations indicate that they trust the system more than
participants using a system that provides no explanation.

3.3 Statistical Modeling
As stated in section 1, we investigate how misleading explanations
in hardly assessable tasks affect users’ perceived and demonstrated
trust. We adopt the common definition of trust in HCI, which char-
acterizes trust as the extent to which people follow the decisions
made by the machine [32, 60, 65, 69]. However, perceived trust, as
an attitudinal and subjective measure of trust, typically obtained
through self-report measures, may not be the most accurate indi-
cator of real-world reliance on a system [7, 50, 51, 60]. As a result,
a growing number of studies have emphasized the importance of
demonstrated trust, a behavioral and objective measure that re-
flects participants’ tendency to delegate decision-making to the
machine [32, 60, 61, 69]. To consider both perspectives and to an-
swer our research questions as comprehensively as possible, we
model both, Perceived Trust and Demonstrated Trust. To con-
trol for participant-level effects due to multiple measurements per
participant and the unbalanced study design, we fit mixed-effects
models for each measurable outcome of interest to answer RQ1 and
RQ2. Mixed-effects models are well suited for testing our hypothe-
ses because they can handle unbalanced designs and account for
grouping hierarchies [5, 48].

Modeling Users’ Demonstrated Trust. To investigate users’ demon-
strated trust and to answerRQ1 andRQ2, we consider two different
dependent variables, namely alignment and final confidence. The
dichotomous variable alignment indicates whether the participant
adjusted their initial prediction to match the system’s prediction.
The ordinal variable final confidence represents the final confidence
as indicated by the participants after being presented with the sys-
tem prediction and an explanation (Step 5 in Figure 2). We measure
confidence on a 4-point Likert scale (not confident, fairly not con-
fident, fairly confident, confident). To answer RQ1, we model the
effect of explanations on participants’ probability of aligning with
the system prediction. To do so, we only consider measurements
where the user’s initial prediction differed from the system’s pre-
diction (𝑛 = 473). We then fit a logistic mixed effects model with
random intercepts. To investigate H1, we include the binary vari-
able explanation as a fixed effect and participant id and dataset id as
random effects. To evaluate H2 we add the ordinal variable initial
confidence as a fixed effect and allow for interactions. The initial
confidence indicates the confidence of a user in their prediction be-
fore they were shown the model prediction (Step 3 in Figure 2)and
is also measured on a 4-point Likert scale. To answer RQ2 and
evaluate H3 and H4.1/4.2, we model participants’ final confidence
by fitting a two-way repeated measures ordinal regression model
(𝑛 = 1296). We include explanation and initial alignment as fixed
effects and allow for interactions. The binary variable initial align-
ment indicates whether the system’s prediction matched the user’s

initial prediction. By including initial alignment we measure and ac-
count for the potential effect of confirmation bias. We again include
participant id and dataset id as random effects.

Modeling Users’ Perceived Trust. To investigate users’ perceived
trust (RQ3) and evaluate H5 we analyze the answers participants
gave to the questions “I trust the system” (Q1) and “I trust the system
to perform the rest of the labeling alone.” (Q2). We measure the
perceived trust on a 4-point Likert scale (strongly disagree, disagree,
agree, strongly agree) and exclude all participants who indicated
that they do not know how to assess this question. Since we only
measure the perceived trust once for each participant at the end
of the experiment, we model trust by fitting a one-way ordinal
regression model, with explanation as the independent variable.

4 RESULTS
We compare participant’s behavior across the different conditions
by deriving statistical tests from the models introduced in subsec-
tion 3.3. The raw and processed data used for modeling are available
in Sup. 2 and the analysis code in Sup. 3. We performed all of our
analyses using R statistical software (v4.3.1) [55]. We used the lme4
package (v1.1.31) [5] and the ordinal package (v2022.11.16) [16] to
build and fit the mixed-effects models. We obtained p-values using
the lmertest package (v3.1.3) [41] and computed pairwise post
hoc tests using the emmeans package (v1.8.7) [43]. The regression
tables were generated using the stargazer package (v5.2.3) [30].
We define statistical significance at the level of 𝛼 = 0.05. Our results
are as follows3:

H1. Final alignment probability. To answer H1, we only con-
sider observations where the initial prediction of the participants
differed from the system prediction (𝑁 = 473). In line with H1, our
modeling results show that participants who used a system that
3Complete coefficient tables and additional details are provided in the Appendix A
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Figure 4: Forest plots of the marginal effects of both interac-
tion terms initial confidence and explanation on probability
for a participant to align their prediction with the system
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Figure 5: Forest plots that show the marginal effects of both interaction terms alignment and explanation on the predicted
probabilities for four levels of final confidence.

provided misleading explanations aligned their prediction with the
system’s prediction significantly more often than participants who
used a system that presented the prediction without an explanation
(Odds Ratio (𝑂𝑅) = 2.18,Confidence Interval (𝐶𝐼 ) = 1.04−4.56, 𝑝 =

0.039, compare Figure 7 in Appendix A). In Figure 4 we see that the
final alignment probability (y-axis) is higher in cases in which user
received an explanation (blue) compared to cases in which users
did not receive an explanation (orange).

H2. Interaction between explanations and initial confidence.
Our results show that participants who are more confident in their
initial prediction are less likely to align the final prediction with
the system prediction (𝑂𝑅 = 0.09,𝐶𝐼 = 0.02 − 0.31, 𝑝 < 0.001).
For example, participants who were confident (3) in their initial
prediction, aligned their final prediction only in ∼ 10%/∼ 14% (No
Explanation/Explanation) of the cases while participants who were
not confident (0) aligned their final prediction in ∼ 71%/∼ 87% of
the cases. However, against our hypotheses H2, we do not see
a significant interaction effect (compare Figure 4) between the
explanation and the initial confidence of the user prediction. Thus,
there is no evidence that the effect of misleading explanations on
participants’ alignment behavior is greater when participants are
not confident. Thus, we have to reject H2.

H3. Final confidence. In line with our hypothesis, our results
(see Figure 6 in Appendix A) show that participants who receive a
misleading explanation alongside the system’s prediction are more
confident in their final prediction compared to participants who
receive no explanations (𝑂𝑅 = 2.06,𝐶𝐼 = 1.04 − 4.07, 𝑝 = 0.037).
This overall effect can be observed in Figure 5. Here, each quad-
rant corresponds to one of the four confidence levels. The forest
plots within the quadrants indicate the probability that this final
confidence level is predicted by the statistical model, depending on
whether the initial alignment and explanation were given or not.
Therefore, we see that the probability of predicting high confidence
levels (lower left and right quadrants) is greater when an explana-
tion is given (blue forest plots) than when no explanation is given
(orange forest plots). This effect is independent of the initial align-
ment (left and right parts within the quadrants). For low confidence
levels (upper left and right quadrants), the effect is reversed.

H4.1/H4.2. Confirmation Bias. Our modeling results (see Fig-
ure 6 in Appendix A confirm H4.1 and show that participants are
more confident in their final prediction if the system prediction is
equal to their initial prediction (𝑂𝑅 = 9.91,𝐶𝐼 = 6.72 − 14.59, 𝑝 =

0.0017). The odds ratios and confidence intervals shows that the
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effect of the confirmation bias is larger than the effect of the mis-
leading explanations. This can also be observed in Figure 5. In
each quadrant, the difference between the left and right (No Ini-
tial Alignment vs. Initial Alignment) forest plots is larger than the
difference between the orange and the blue plots (No Explana-
tion vs. Explanation). However, we found no statistically signif-
icant interaction effect between initial alignment and treatment
(𝑂𝑅 = 0.66,𝐶𝐼 = 0.40 − 1.07, 𝑝 = 0.093), and thus reject H4.2.

H5. Perceived Trust. To evaluate H5, we excluded all partic-
ipants who selected the “Don’t know” option for the questions
of how they trust the system. Running a two-sample ordinal re-
gression test on the remaining data from 140 (Q1) and 148 (Q2)
participants, we found that participants who use a system that pro-
vides misleading explanations indicate a higher perceived trust than
participants who use a system that does not explain its predictions
(Q1: 𝑂𝑅 = 2.68,𝐶𝐼 = 1.36 − 5.31, 𝑝 = 0.005, Q2: 𝑂𝑅 = 1.98,𝐶𝐼 =

1.05 − 3.72, 𝑝 = 0.034). Therefore, the results shown in see Figure 8
in Appendix A support H5.

5 DISCUSSION
Our experiment was designed to complement existing literature,
focusing on an underexplored context: explaining unreliable pre-
dictions for hardly assessable tasks. Overall, our study provides
new evidence that supports the explainability-trust hypothesis [36]
revealing a significant impact of explanations on both perceived
and demonstrated trust. Furthermore, it sheds light on the some-
what mixed findings from previous empirical studies regarding the
relationship between trust and explanations. Notably, our results
emphasize the critical role of task assessability in determining the
likelihood that individuals rely on explanations to build trust, a
factor that has been overlooked in prior research.

Concerning demonstrated trust, we show that misleading ex-
planations can be used to convince participants to revise their
predictions to match the machine’s predictions, even when the
system is highly unreliable (50% accuracy in our case). As expected,
individuals with lower initial confidence were more likely to revise
their predictions to match the machine’s prediction. Furthermore,
the treatment group, exposed to misleading explanations, consis-
tently displayed a higher likelihood of aligning their predictions
irrespective of the initial confidence. This finding shows how vul-
nerable users are to misleading explanations of ML systems. This
overtrust in the system’s capabilities can potentially be exploited
to manipulate users.

Among individuals with no or low initial confidence (levels 0 or
1), a substantial degree of prediction alignment occurred in both
the control and treatment groups. Highly confident participants
(level 3) aligned their predictions only in a few cases in both groups
(< 15%). However, somewhat unexpectedly, participants with mod-
erately high initial confidence (level 2) were most affected by the
explanations when it came to aligning with the system’s predic-
tion. In the absence of any explanations, less than 25% of such
participants aligned their predictions with the system’s prediction.
However, when provided with the explanation, this alignment ratio
increased to over 50% (see Figure 3). This suggests that misleading
explanations have a particularly large effect on people who initially
feel quite but not entirely confident.

Another interesting reflection is that creating misleading ex-
planations is not very complicated. Our explanation generation
system was a fairly naive algorithm that just explains decisions
based on loose references to training data. However, we observed
that the uncertainty of participants and their lack of expertise
when dealing with hardly assessable tasks made them vulnera-
ble to being influenced by such simple misleading explanations.
Given the current progress in AI, we expect even more persuasive
explanations in the future that may even increase the explanation
bias [6, 10, 24, 26, 27, 33, 34]. This highlights the need for carefully
evaluating the effects of explanations.

Besides evidence for the explainability-trust hypothesis, we also
observed confirmation bias for hardly assessable tasks. Our results
show that the effect of the confirmation bias on users’ trust is even
larger than that of the explanation bias. Although not statistically
significant, we saw a stronger confirmation bias in the treatment
group, which may indicate that explanations can increase confir-
mation bias.

6 CONCLUSIONS
In this paper, we have analyzed the impact of misleading explana-
tions on trust in a system that performs hardly assessable tasks. We
argue that this scenario is interesting to study because it reflects
the realistic scenario that an ML system is unreliable (i.e., it may
produce incorrect predictions) but it generates an explanation that
justifies the prediction convincingly. Such misleading explanations
are not necessarily the result of unethical behavior of engineers
trying to manipulate users. Instead, they are a consequence of using
simpler models or reasoning to explain the predictions of complex
and opaque models. Our work contributes to the existing knowl-
edge about the impact of explanations on user trust in ML systems.
Our study is the first to analyze this impact in the context of an
unreliable system providing misleading explanations for a hardly
assessable task. Our results indicate that misleading explanations
significantly impact demonstrated and perceived trust in a system
that is wrong in 50% of the cases. We conclude from these findings
that engineers should pay extra attention to when and under which
conditions the system provides explanations. For example, explana-
tions may be calibrated according to the system’s confidence.

7 OPEN ACCESS
All research artifacts (an overview of the online survey, data pro-
cessing and analysis code, raw and processed data) and a more
detailed description of the explanation generation and survey are
available at the following link: https://osf.io/azu72/
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A APPENDIX

Predictors

final confidence
Odds Ratios CI p

not confident | fairly not confident 0.13 0.05 – 0.30 2.199e-06

fairly not confident | fairly confident 1.69 0.73 – 3.94 2.221e-01

fairly confident | confident 30.15 12.64 – 71.88 1.551e-14

initial alignment [Alignment] 9.91 6.72 – 14.59 4.409e-31

treatment [Explanation] 2.06 1.04 – 4.07 3.695e-02

initial alignment [Alignment] : treatment [Explanation] 0.66 0.40 – 1.07 9.286e-02

N id 162

N dataset 3

Observations 1296

Marginal R2 / Conditional R2 0.132 / 0.591

Figure 6: Two-way repeated measures ordinal regression
model for the final confidence.

  final alignment
Predictors Odds Ratios CI p

(Intercept) 0.58 0.26 – 1.32 1.974e-01

initial confidence [linear] 0.09 0.02 – 0.31 1.794e-04

initial confidence [quadratic] 0.79 0.30 – 2.11 6.437e-01

initial confidence [cubic] 1.51 0.76 – 2.98 2.405e-01

treatment [Explanation] 2.18 1.04 – 4.56 3.867e-02

initial confidence [linear] : treatment [Explanation] 0.83 0.18 – 3.88 8.174e-01

initial confidence [quadratic] : treatment [Explanation] 0.86 0.24 – 3.00 8.090e-01

initial confidence [cubic] : treatment [Explanation] 0.45 0.17 – 1.18 1.060e-01

N id 160

N dataset 3

Observations 473

Marginal R2 / Conditional R2 0.203 / 0.508

Figure 7: Mixed effects model for the alignment probability.

perceived trust (Q1)
Predictors Odds Ratios CI p Odds Ratios

perceived trust (Q2) 
CI p

0|1 0.06 0.02 – 0.14 9.049e-10 0.07 0.03 – 0.15 6.405e-11

1|2 0.86 0.54 – 1.38 5.355e-01 1.57 0.98 – 2.54 6.213e-02

2|3 26.72 11.80 – 60.50 3.345e-15 26.57 11.68 – 60.43 5.207e-15

treatment [Explanation] 2.68 1.36 – 5.31 4.557e-03 1.98 1.05 – 3.72 3.386e-02

Observations 140 148

R2 Nagelkerke 0.068 0.035

Figure 8: One-way Repeated Ordinal Regression for the per-
ceived trust
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