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Explainable Predictions
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Figure 1: Participants watched dashcam videos in VR and continuously rated perceived risk (left). After preprocessing and
analysis (middle), we trained a ML model to generate explainable predictions from video and eye-tracking data (right).

Abstract

How do drivers perceive risk? Understanding what situations and
factors cause drivers to perceive situations as critical can improve
our understanding of road user behavior and inform automated
driving technology. To investigate the factors that shape drivers’
risk perception, we conducted an eye-tracking study with 27 par-
ticipants who watched dashcam videos and continuously rated the
perceived risk of various driving situations. Using the resulting
dataset, we developed a computer vision-based machine learning
approach that generates explainable predictions of perceived risk
from video and eye-tracking data. Our SHAP analysis reveals that
the proximity of objects and number of cars in a scene are the most
significant contributors to perceived risk. Most interestingly, while
people tend to sample similar objects in critical situations, their risk
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perception remains highly personal making visual sampling behav-
ior a weak predictor of perceived risk. Overall, our explanations
reveal non-linear insights beyond previous work, suggesting that
risk perception is not only shaped by visual input, but primarily
by cognitive processes which is in line with theoretical models of
situation awareness. The dataset, source code, and a comprehensive
usage guide are publicly available.
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1 Introduction

What shapes drivers’ risk perception so that they assess situa-
tions appropriately and react accordingly in case an intervention is
needed? Investigating this question is key to understanding driver
behavior in dynamic and often ambiguous traffic environments.
Risk perception plays a critical role in road safety, driver decision-
making, and in the broader context of automated driving. Under-
standing which situations drivers perceive as critical - and why -
can inform traffic psychology, the design of next-generation driver
assistance systems, and Automated Vehicles (AVs).

In a perfect world, drivers would constantly monitor the driving
environment and calibrate their subjective risk in a way that it
matches the objective risk of future events. However, questions of
environment monitoring, situation awareness, and risk are complex.
First, it has been shown that drivers differ in their understanding
of driving situations and even in what defines a situation or con-
text change [2]. Second, even attentive drivers who appropriately
monitor the road environment do not always react appropriately
to hazards [51]. Third, perceived risk consists of epistemic and
non-epistemic components [22], leading to differences in risk per-
ception between drivers based on their experience or ability [8].
For example, an experienced race driver may be able to successfully
navigate a situation that a novice driver would consider a dead
end. Consequently, the chain of thought between visual perception
and potentially successful reactions needs to be researched more
thoroughly. In this study, we focus on the initial stage of this pro-
cess by examining what factors influence drivers’ subjective risk
assessment.

We argue that understanding and predicting perceived risk is
important along three dimensions. First, it can help AVs determine
whether drivers assess situations similarly as AV algorithms. In
SAE level 2 driving [1], this information can be utilized to inform
driver state assessment and monitoring support systems. In level 3,
it can help to determine whether a driving situation is suitable for
handing back control to the human driver. These take-over requests
are a critical component in level 3 automated driving and repre-
sent a general problem in the interaction between humans and
automation that has yet to be fully resolved [11]. Second, knowl-
edge of perceived risk can guide AV behavior to align with user
expectations, such as adjusting driving behavior in situations that
are likely to be experienced as critical, thereby improving com-
fort and trust [43]. Third, the ability to predict perceived risk can
support the generation of explanations in AVs, helping automated
driving systems determine when and why to deliver information
that improves user understanding and trust in automation [38, 55].
Considering these dimensions, it becomes clear that being able to
predict and explain what drivers perceive as risky is not only bene-
ficial for traffic psychology, but also necessary to develop vehicles
that are aware and adaptive of how humans assess traffic situations.

Despite its significance, the question of how risk perception
unfolds in real-world traffic scenarios remains underexplored, par-
ticularly in dynamic contexts [36]. In this paper, we address this gap
by studying perceived risk as a continuous, temporally unfolding
phenomenon, integrating eye-tracking data and computer vision ap-
proaches with explainable Machine Learning (ML). We conducted a
user study in Virtual Reality (VR) with 27 participants, who watched
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dashcam videos of various urban traffic scenarios and continuously
rated their perceived risk using a self-developed rotary controller.
Throughout the study, we recorded participants’ gaze behavior.
To enhance the data we employ YOLO [41] for object detection
enabling us to analyze which objects in the environment the par-
ticipants focused on. Based on this multimodal data, we propose a
ML model that predicts drivers’ perceived risk based on features of
the traffic scene, demographic information, and participants’ visual
attention allocation. To interpret the model’s predictions, we apply
SHapley Additive exPlanation (SHAP), an explainable Al method,
grounded in game theory, that provides explanations of feature
contributions. This allows us to generate insights into how factors
such as object proximity or the number of surrounding vehicles or
pedestrians influence perceived risk.

While prior research on risk perception has often leveraged
eye-tracking data, these studies predominantly focus on low-level
eye movement metrics (e.g., saccade durations or fixation counts)
within binary hazard detection tasks [32, 33]. However, they over-
look a crucial question: what do drivers actually look at, and how
does their visual sampling behavior shape their perception of risk?
To answer this question, we investigate risk perception through
the lens of level 1 perception in Endsley’s Situation Awareness
model [20] — that is, the identification of relevant objects in the
environment: Is visually sampling specific objects predictive of per-
ceived risk? Furthermore, we go beyond prior work and binary
classification approaches by adopting a continuous, real-time mea-
sure of perceived risk. This aligns with calls from prior work (e.g.,
Asteriou et al. [2], Moran et al. [36]) and enables us to derive more
fine-grained insights into the dynamics and individual differences
of risk perception, which is relevant for automated driving tech-
nology. Furthermore, we examine risk perception across a broader
and more ecologically valid set of traffic scenarios, encompassing
both ambiguous and unambiguous driving situations. Finally, while
recent work such as De Winter et al. [10] uses static images to pre-
dict perceived risk, we incorporate the dynamic context of driving
videos, combining eye-tracking with computer vision and explain-
able Al techniques to model and interpret perceived risk unfolding
over time.

Our results show that information about what drivers are looking
at is a weak predictor of perceived risk. Combining our modeling
results with the descriptive results obtained from the analysis of
the collected datasets, our findings indicate that while people are
consistent in perception (level 1 SA according to [20]), they differ
widely in comprehension (level 2 SA) and projection (level 3 SA).
This makes Situation Awareness (SA) and risk perception in traffic
an individual, experiential matter. This finding is underscored by
the fact that contextual information about the driving scene and
individual differences are the most relevant contributors to our ML
predictions. The latter is consistent with previous work showing
that risk perception is highly personal and, for example, differs
significantly between novices and experts [8]. In summary this
paper makes the following contributions:

e An openly available and easily extensible eye-tracking
dataset: We present and share a dataset of perceived risk
ratings of drivers (N=27) watching dashcam videos of ur-
ban traffic. The dataset consists of participants’ demographic
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data, such as age and frequency of car use, the detected
YOLO bounding boxes for each frame, and the recorded
eye-tracking data for each participant. The dataset is accom-
panied by extensive documentation to facilitate its use and
extension.

e An explainable ML approach for perceived risk predic-
tion: We present an xAl approach that can predict drivers’
perceived risk based on scene features, demographic infor-
mation, and gaze behavior. The approach generates not only
predictions, but also explanations of perceived risk that cap-
ture non-linear dependencies between features.

e Insights into perceived risk perception connected to SA
theory: We present an analysis of our dataset and modeling
results through the lens of Endsley’s SA model [20], revealing
that perceived risk is not solely determined by where people
look, but rather by how they interpret the entire scene as a
whole based on their experience.

2 Related Work

Understanding how drivers perceive risk requires engaging with
different strands of research, such as SA, models of attention allo-
cation, and recent work on risk perception and prediction. Below,
we review the relevant findings of these areas and analyze how our
work contributes to them using ML.

2.1 Situation Awareness and its Components

Situation Awareness (SA) is a theoretical framework often used
in transportation studies on risk perception [36] or supervisory
control [51]. SA is defined as the “perception of the elements in the
environment, within a volume of time and space, the comprehension of
their meaning, and projection of their status into the near future” [21].
According to Endsley [21], there are three levels of SA, namely
perception, comprehension, and projection. A lot of research so far has
emphasized the level of perception as it is less abstract than the other
levels and, thus, more operationalizable. Zhang et al. [58] reviewed
25 articles on SA measurements, where eye-tracking was the most
widely used one. Other methods, such as the situation awareness
global assessment (SAGAT) [21] or the situation awareness rating
technique (SART) [6] either strictly distinguish between the levels
and consider the concept as a whole or are highly subjective.

In the context of driving, a great variety of factors influence SA.
A study by Yang et al. [57] lists road (traffic and road conditions)
and driver characteristics (gender, age, experience), driver states
(emotions, fatigue), distractors, cognitive abilities, and properties
of the environment on the three levels of perception (other entities,
signs, hazards), understanding (locations and speeds of traffic ob-
jects), and prediction (behavior of the ego vehicle and other road
users). By structural equation modeling, they showed that drivers’
cognitive abilities had the highest influence on SA, followed by
driver states and driver characteristics.

Another important theoretical perspective on SA is the Salience,
Effort, Expectancy, and Value (SEEV) model [52]. This model de-
scribes how operators allocate visual attention in dynamic envi-
ronments. It predicts where people will look at, given the visual
salience of objects in a scene, the expectancy of changes in certain
Area of Interests (AOIs), the effort it takes to shift the gaze from
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the current point to another AOI, and the value an AOI has for the
task. For individual risk prediction, expectancy and value are of
special interest, as these factors might not be objectively assessable.
SEEV is increasingly used in driving research. Scharfe-Scherf et al.
[44] present a cognitive model that directs attention to different
areas of interest in take-over scenarios, and the authors suggest
addressing eye-tracking in the future. Another work by Du et al.
[14] combines SEEV with ACT-R and suggests investigating more
real-life situations with diverse participants.

2.2 Perceived Risk: Psychology and Prediction

Risk perception has been extensively studied from a behavioral
perspective. In one of the fundamental works, Slovic [47] distin-
guishes between risk assessment (analytic evaluation of risk) and
risk perceptions (fast, intuitive judgments), where one’s expertise
and experience toward particular situations help to avoid biases
and misconceptions. Li et al. [26] discuss subjective risk perception
based on previous works by Stuck et al. [48] and Numan [37]: Risk
perception involves the probability and severity of potential acci-
dents, including both a relational (based on previous experiences
and knowledge) and a situational (context-specific belief that a
situation yields negative outcomes) component.

In the past, risk perception was frequently investigated when re-
searching explanations for higher crash rates among young drivers,
which have shown (at least partly) to stem from them systematically
underestimating risk in traffic [23, 50]. In addition to age, driving
experience also plays a significant role. According to Crundall [8],
novices perform poorly when predicting hazards, while experts
have more attentional resources and react to cues earlier [9]. This
was also confirmed by Pradhan et al. [40] , who found that inex-
perienced drivers were less likely to fixate on potential hazards
than experienced drivers. In addition, Moran et al. [36] found in a
review on hazard perception that age and experience are the most
influential features for perceived risk.

More recently, perceived-risk has increasingly been addressed
in automated driving studies on trust in AVs [26], for example,
to adjust driving styles. Another line of research addresses driver
vigilance and driver monitoring systems. Arguably, AVs need to
predict whether a driver monitors the road environment (on level
2) or if they would be able to take back vehicle control in case of a
take-over request (level 3). De Winter et al. [10] summarized vari-
ous works and listed factors that influence perceived risk, such as
visibility, weather, headway, lane width, or proximity to other road
users. In their work, they also proposed to focus more on predicting
than merely measuring the concept, performed an image-based
online study, and conducted a regression analysis to predict per-
ceived risk. Using dashcam videos, Bazilinskyy et al. [4] assessed
risk perception in different countries and found that respondents
were better in assessing the risk of scenarios in their own cultures.
Later, Driessen et al. [13] showed that GPT-4V was able to generate
risk ratings that highly correlated with human study participants
data. In addition other comparisons between human ratings and
scene features have been conducted. Asteriou et al. [2] showed that
participants’ risk and criticality ratings correlated with the num-
ber of traffic objects in a scene detected by the YOLO algorithm,
and previous works utilized even simpler features, such as visual
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contrast or the JPG compression rate [2, 39]. Collectively, these
studies indicate a strong interplay between the factors of gaze and
visual scanning behavior, situation awareness, and perceived risk.
Another avenue of research regarding risk perception is its connec-
tion to trust [26]. Being able to quantify the perceived risk and trust
of a driver-passenger would allow the realization of various user
interface proposals for trust calibration that suggest personalized
feedback [7, 54, 55] following explainable AI (xAI) principles.

In this context, xAI methods could be used not only to develop
adaptive HMIs but fulfill its originally intended purpose of explain-
ing the characteristics of a prediction model. In this paper, we utilize
this approach: identifying the factors that contribute to the concept
of perceived risk the most.

2.3 Generating Explainable Predictions with
SHAP

xAl seeks to make ML models more transparent by providing a suite
of techniques that enable human users to understand, appropriately
trust, and produce more explainable models [12, 15, 27, 46]. The
explanations xAlI algorithms offer can be understood as an interface
between humans and models [3], offering valuable insights across
various applications like transportation [18] or healthcare [56]. In
the context of risk perception, explainable predictions are especially
important. While predicting perceived risk is useful, particularly
for automated driving systems, our goal goes further. In this work,
we aim to better understand the factors that influence how people
perceive risk, with a focus on visual attention allocation. Which
elements in a scene contribute most to risk prediction? And how
does perceived risk vary across individuals?

To generate such explanations we leverage SHapley Additive
exPlanation (SHAP). SHAP, proposed by Lundberg and Lee [31]
is a method based on Shapley values from coalitional game the-
ory [45]. The SHAP method provides local and global explanations
for arbitrary predictive models. Various methods exist for approxi-
mating SHAP values across different types of ML models. In this
study, we employ TreeSHAP [29], which enables the exact compu-
tation of SHAP values for tree-based models. Compared to methods
like LIME [42] or tree-specific techniques, such as permutation
importance and feature impurity calculations, SHAP offers several
advantages. Grounded in game theory [35], SHAP values provide
theoretical guarantees of consistency and local accuracy. More-
over, they ensure alignment between local and global explanations,
clearly indicate whether each feature’s contribution is positive or
negative, and, as demonstrated by Lundberg et al., exhibit a stronger
correspondence with human intuition [29, 31].

3 Methods

The following section outlines the user study conducted for data
collection, the subsequent data processing steps, and the ML ap-
proach employed to model and explain drivers’ risk perception
based on SA and visual attention allocation.

3.1 User Study and Data Collection

In our user study, participants continuously rated the perceived risk
while watching dashcam footage of inner-city driving. Throughout
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the experiment, their gaze behavior was recorded. The study was
approved by the ethics committee of Leipzig University.

Participants. We recruited 27 participants through opportunity
sampling at our institution (17 identified as male, 10 as female, and
1 as non-binary; Mean = 35.2 years, SD = 12.1). All participants
held a valid driver’s license. To ensure compatibility with the eye-
tracking system, individuals who wore glasses were excluded from
the study.

Apparatus. To represent typical inner-city traffic, we used a
dashcam video (Full HD, 60 fps) recorded in Berlin obtained from
YouTube. We obtained written permission from the creator to use
the video in this study. To cover a wide range of risk ratings, we se-
lected four segments with partially critical situations and four with
predominantly non-critical situations. To cover the heterogeneity
of urban traffic, we selected the segments to vary in traffic density,
road type, and road user density. The participants viewed the videos
through a VARJO XR-3 VR headset to enhance the immersive ex-
perience and allow eye-tracking. To enable real-time, continuous
assessment of perceived risk, we developed a custom controller
featuring a rotary knob as described in [2]. The device comprises
an Arduino board connected to a potentiometer, all enclosed within
a 3D-printed casing. A manual on how to build and 3D-print the
controller is provided at Sup. Controller Manual. To show the videos
and synchronize them with eye-tracking data and risk ratings, we
developed a Unity application that displays the videos on a virtual
canvas (200cmx 112, 5¢cm) in 130cm distance to the headset’s camera
view. Head movement and eye-tracking are synchronized using the
Varjo Base software !. Communication between the controller and
the Unity application is handled using the Uduino package 2. The
controller input (rotation angle) is linearly mapped to a risk score
between 0 and 100. Building on the results of a preliminary pilot
study, we implemented peripheral visual feedback using an ambient
light display surrounding the video display. The ambient light con-
tinuously reflects the risk rating using a traffic light color scheme
from green (low), over yellow (medium), to red (high). This allows
for an intuitive interpretation without distracting from the driving
scene or interfering with gaze behavior during the experiment.

Study Procedure. At the beginning, participants were given
written and verbal information about the study procedures and
potential VR-related risks, such as motion sickness. They were
then assigned a pseudonym for data collection and completed a
demographic questionnaire on gender, age, driving habits, and risk
disposition. The demographic data is available at Sup. Demograph-
ics. Before the experiment started, we calibrated the eye-tracker and
asked participants to familiarize themselves with the controller’s
haptics and the ambient light feedback. Subsequently, the partici-
pants viewed eight dashcam videos. Eight 35-second videos were
presented in random order to reduce order effects. Between the
videos we showed a 5-second countdown to allow participants to
return the controller to the neutral position to ensure a neutral risk
assessment at the beginning of each video. After the experiment,
we conducted a semi-structured interview to gain additional in-
sight into subjective perception, perceived gaze behavior, and risk
assessment.

Lhttps://varjo.com/use- center/get-to-know-your-headset/using-varjo-base/
Zhttps://marcteyssier.com/uduino/
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3.2 Data Processing

In this section we describe how we process the raw data to create
a dataset on which a ML model can be trained. For all recorded
data per 35 second trial we discard the first 5 seconds, because
we consider this as the adaption phase where participants have to
familiarize with the new scene before assessing perceived risk.
Video Data. To obtain scene features we apply YOLOv11 on all
videos. For each frame we infer the object bounding boxes, including
id, position, width and height, certainty of prediction, and the class
of the object. The data is available at Sup. YOLO BoundingBoxes.
Gaze Data. To analyze participants’ gaze behavior, we first
match all gaze coordinates per frame to the bounding boxes de-
tected by YOLO. To account for slight inaccuracies in bounding box
detection and gaze behavior, we consider a gaze to be “on” an object
if the gaze point is within 35 pixels of a YOLO bounding box. All
gaze points that do not meet this criterion are assigned to a separate
category. Subsequently, we compute the Shannon entropy of fixated

objects per frame across all participants H = — };cps pi log, pi
over all object categories, where p; = llg;lrz)i”‘l .

Risk Ratings. Since the recorded risk data varies significantly
between participants (see raw values as shown in Figure 2), we
normalize the perceived risk values using min-max normalization
over all videos per participant. Accordingly, for each participant,
100 represents the highest risk value and 0 represents the lowest
risk value.

3.3 Data Aggregation

To capture the temporal dynamics of the driving scene in the context
of continuous risk ratings, we employ a sliding window approach.
Specifically, we aggregate the preprocessed data using the mean
in overlapping time windows of 2 seconds and a step size of 0.5
seconds. A window length of 2 seconds can be considered an ade-
quate proxy for capturing small changes and essential detail in the
scene. This value is based on the guideline for off-road glances, as
glances longer than 2 seconds are considered potentially dangerous
in dynamic environments [24], where much can change within
this short time span. To ensure sufficient differences between the
chunks for the ML model, we use a step size of 0.5 seconds.

3.4 Modeling and Feature Selection

We use XGBoost as our modeling approach due to its strong predic-
tive performance on tabular data, its simplicity, and explainability
via TreeSHAP. For training we use mean squared error (MSE) as
loss function, a learning rate of 0.01, and a maximum of 800 boost-
ing iterations. To mitigate overfitting, early stopping is applied
with a patience of 20 iterations. The final input vector used for
prediction includes participant demographics as well as scene and
gaze features. To test individual demographic features and their
dependence on perceived risk, we include age, and frequency of use.
The derived feature dage represents the participant’s age (agep) in
years, which is encoded into the following bins using numerical
values for labeling: age, < 30 years (0); 30 < age, < 40 years (1);
agep > 40 years (2). We encode the frequency of use dysage into
three bins as well, namely at least once per week (2), at lest once a
month but less than once a week (1), and less than once a month (0).
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For the detected YOLO features we only keep bounding boxes
of the following categories person, bicycle, car, motor cycle, bus,
truck, traffic light, stop sign, dog. Based on the bounding box data
we calculate the maximal bounding box size and the sum of all
bounding boxes per category visible in one frame. The resulting
features are denoted as spym_class- Similar to related work De Win-
ter et al. [10], we compute the size of each bounding box in pixels
and introduce the feature s, pp class>» Which represents the max-
imal bounding box size for each class in a frame, to approximate
the distance between ego vehicle and object. For all s, class and
Smax_bb_class features, we additionally compute the char_lge rates
Sslope_num_class and Sslope_max_bb_class P€r chunk to better capture
temporal differences. In addition to the object detection, we carry
out manual labeling to capture the context of the driving situation
more precisely. We determine the number of lanes sjpe¢ (1 to 4)
and proximity to a junction Sproximity junction Which is encoded nu-
merically (not in sight (0); in sight (1); on junction (2)) for each video
frame. For every YOLO class we determine how much time of a
chunk a participant looked at this specific class. This results in a
feature for every class, denoted as gcjass name-

4 Evaluation and Results

In the following, we present the collected dataset, report on the
performance of our modeling approach, and present the explainable
predictions generated with SHAP.

4.1 Dataset

The final dataset comprises 388, 214 annotated video frames col-
lected from 27 participants. For training and evaluating the ML
models, we use a subset of 12,312 samples, which were generated
by segmenting the full dataset into temporal chunks, as described in
subsection 3.4. The distribution of risk ratings before normalization,
aggregated per participant across all videos, is shown in Figure 2.
There is considerable variability between participants. For example,
some (such as P6 and P20) consistently gave low ratings, with a
median of zero, while others (such as P4 and P8) had median ratings
closer to 50. The Inter Quartile Range (IQR) also varies between
participants, as seen in the differing box lengths (e.g., P5 and P9),
and the total range of values differs as well, indicated by the whisker
lengths (e.g., P1 and P9).

Figure 3 shows the mean risk rating and its standard devia-
tion as well as the focus entropy over one video sequence. In this
scene, a vehicle is overtaking the ego-vehicle from the right side,
which is against the local traffic regulations. During the time of the
overtaking maneuver the mean risk rating increases significantly
(25.8 s < t < 28.3s) while the standard deviation decreases, indi-
cating consensus in the risk rating between participants. At the
same time, focus entropy decreases. In this context, low entropy
suggests that participants allocated their attention on similar ob-
jects, whereas high entropy reflects a more diverse distribution of
visual focus across different objects. This pattern is also evident in
the annotated saliency maps, where participants focused almost
exclusively on the overtaking car. In contrast, in a different scenario
where the ego vehicle drives through a one-lane construction zone,
we observe a focus entropy of approximately 0.6, which is one of
the lowest values across all videos. The saliency maps reveal that
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Figure 2: Risk ratings over all videos per participant before normalization clustered by experience (age, frequency of use).
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Figure 3: Visualization of how the mean risk rating, its standard deviation, and visual focus entropy vary over a video sequence.
The annotated saliency maps visualize the participants’ gaze patterns in three different situations, namely during a right-side
overtaking maneuver, which led to an increase in risk rating and a decrease in entropy.

most participants visually fixated on the same object: the leading 4.2 Experimental Results

car (Sup. HeatMap). HOWGV}“—L. in this‘case, §hared v.isual focus did Apart from evaluating how accurately we can predict perceived
not reduce the standard deviation of risk ratings. This suggests that risk in traffic situations, we are also interested in whether gaze
even though participants looked at the same object, their perceived information (i.e., where do drivers look at) improves prediction per-
risk varied significantly. formance, and how well our ML models handle the high variability

in participants’ risk ratings (see Figure 2). To this end, we conduct
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Table 1: Comparison of the different models. It shows the MAE on the participant level (leave-one-video-out cross validation),
over all participants (leave-one-participant-out cross validation), and leave-one-participant-out over the novice and expert

clusters derived by agglomerative clustering.

Model Individual Participants ~ All Participants Agglomerative Cluster
MAE Std MAE MAE Novice MAE Expert
XGBoost (without Gaze) 19.631 7.056 19.406 17.046 22.039
Mean Predictor 21.083 7.239 25.055 23.670 25.692
Linear Regression 33.454 9.139 23.424 18.994 23.170
XGBoost (with Gaze) 19,914 7.158 19.771 17.554 22.271
Mean Predictor 21.083 7.239 25.055 23.670 25.692
Linear Regression 34.638 9.466 23.429 19.214 23.319

three sets of experiments using different subsets of our dataset:
individual participants, all participants combined, and participant
clusters (see Table 1). In each experiment, we compare an XGBoost
model to a linear regression model and a baseline mean predictor.
Additionally, we assess the impact of gaze information by compar-
ing models that incorporate gaze features to those that do not. Due
to our relatively small dataset (N=27) and multiple samples per
participant (2 second chunks that overlap), we evaluate all models
using leave-one-out cross-validation.

Leave-One-Participant-Out Cross-Validation over all Par-
ticipants. In the first experiment, we perform a leave one out evalu-
ation across the participants. This means that we train a model over
all participants except one. The data of this participant is used for
evaluation. This procedure is applied to all participants, based on
which we then compute the mean error over all left out participants.
For the XGBoost model the average Mean Absolute Error (MAE)
over all left out participants is MAE = 19.406 for the no-gaze ex-
periment and MAE = 19.771, respectively. The mean predictor
and linear regression models performed significantly worse (see
Table 1).

Clustered by Experience. In the second experiment, we cluster
participants using agglomerative clustering with respect to age and
car usage frequency, both of which have been shown to influence
risk perception [36]. The rationale behind this clustering is to inves-
tigate whether or not it is easier to predict perceived risk for one of
the two groups. The two resulting clusters are of size cexpert = 13
and cpovice = 14, with Cexpert Ccontaining the more experienced par-
ticipants (see Figure 2). For training and evaluation we perform
leave-one-out cross-validation only on the separate clusters, not on
the whole dataset. The cluster cpgyice achieves the most accurate
prediction for gaze (MAE = 17.554) and no-gaze (MAE = 17.046)
models over all experiments. However, the cluster cexpert repre-
senting the more-experienced drivers has the largest error over all
experiments (MAEgqze = 22.271, MAEpo—gaze = 22.039).

Individual Leave-One-Video-Out-Predictions. We test pre-
dictions on an individual level in the third experiment. Therefore,
we perform a leave-one-out evaluation over the videos for each
participant separately. For evaluation, we average the individual
resulting losses over all participants. Compared to the other ex-
periments, the MAE is close to the results for the leave-one-out
evaluation over all participants for the gaze (MAE = 19.914) and
no-gaze models (MAE = 19.631).

4.3 Explainable Predictions

Being able to predict perceived risk is valuable for in-car appli-
cations that for example use these predictions to trigger explana-
tions [16, 53] or adapt their design. However, black box predictions
are of limited value when it comes to understanding human behav-
ior. To generate deeper insights into the key factors influencing
perceived risk most, we use SHAP. SHAP enables us to identify the
most relevant features contributing to model predictions (Figure 4)
and to examine how these features interact, helping to explain their
influence on the model’s output. Despite the small difference in
MAE between gaze and no-gaze models (compare Table 1), we ap-
ply SHAP to the XGBoost model trained with gaze features and
across all participants. This allows us to analyze trends in the gaze
features, even though their importance for the overall prediction is
comparatively low.

To understand which features impact the model prediction most,
we grouped the most predictive ones in a beeswarm plot shown
in Figure 4. In a beeswarm plot each row represents one feature
and each dot in a row corresponds to an individual prediction (i.e.,
one 2 second traffic scene) with the color representing the feature
value. The features are ordered by the mean absolute value of the
SHAP values with the most important features at the top. The posi-
tion on the x-axis indicates the SHAP value, reflecting the impact
this feature has on the perceived risk prediction. dyge, dysage, and
Smax_bb_car are the most predictive features. Whereby higher age
values contribute to a higher perceived risk prediction and medium
age values contribute to a lower risk prediction. However, low age
values have no direct impact on the model output in any direction.
The plot also shows that the higher participants’ usage frequency
dusage the lower is the predicted perceived risk value. Interestingly,
scenes with a higher number of cars are associated with lower
predicted perceived risk, as indicated by spum_car. In Figure 4 we
also observe that a decrease in spux pb_car iS associated with lower
perceived risk predictions. We use smayx bh_car s @ proxy for the
distance from the ego car, with smaller values indicating that the
object is further away. The first gaze related feature gcars is the 7th
most predictive. There is no clear trend in how this feature affects
model prediction. The sum of the remaining 39 features indicates
that while some high feature values influence model predictions,
the majority have an effect close to zero, consistent with these
features being ranked less important.
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Figure 4: Beeswarm plots for the leave one out validation over all participants. Every row represents a feature. Each point in a
row corresponds to an individual prediction and is colored according to the feature value.

To understand the effect of single feature values on the model’s
prediction in more detail, we plot the SHAP values (y-axis) against
the corresponding feature values (x-axis). Every aggregated chunk
(a 2 second driving scene) is represented as a dot (see Fig. 5). Vertical
dispersion at a given x-value indicates non-linear dependencies
between the displayed feature and other features. The colors repre-
sent the feature values of the feature with the highest interaction
effect. The histogram at the bottom of each plot illustrates the dis-
tribution of data points across the feature range. Fig 5a shows that
using a car daily (2) leads to lower risk predictions. For participants
who use a car at most once a month or less, there is a neutral to
slightly positive or negative effect on the model output, depending
on age. Using a car weekly, but not daily, has the strongest effect
on risk perception, especially for people aged between 30 and 40.
Figure 5b indicates that for situations with a low number of cars
(Snum_cars < 5) risk predictions tend to be higher, whereas for a
medium number of cars (5 < spum_cars < 16) there is no affect on
risk predictions. However, a high number of cars ( snum_cars = 16)
leads to lower risk predictions, indicating that scenes with lots of
cars are perceived as less risky. As shown in Fig 4, the most im-
portant gaze features by mean SHAP value are gcar and gunfocused-
However, they remain close to zero across their respective value
ranges as seen in Figure 5d for gcar. This suggests that they have
little effect on the prediction of perceived risk.

Fig 5c shows that smaller bounding box sizes up to 90, 000 pixels
(4.3% of the screen size 1920 X 1080 pixels) have a negative im-
pact on the model output. This indicates perceived risk is lower
when other cars in the scene are far away, even if there are many
cars. However, average maximal car bounding box areas per chunk
larger than 90, 000 pixels (4.3% of screen size) lead to high positive
model outputs, regardless of the number of cars in the scene, what
indicates that proximity to other cars influences perceived risk.

5 Discussion

Although the information where drivers look at did not enhance
prediction accuracy, this outcome is itself an interesting and valu-
able finding. While the results may not show a significant boost
in predictive performance, the combination of descriptive analysis
and explainable predictions provides meaningful and insightful
contributions to our understanding of the perceived risk in driving.

5.1 Risk Perception is Primarily Shaped by
Individual Differences and the Driving
Context

Our results show that individual characteristics, such as age and
driving frequency, as well as contextual factors like the number
of nearby vehicles and proximity to other cars or pedestrians, are
among the most influential features for predicting perceived risk
(see Figure 4). The finding that risk perception is shaped by age
and driving experience aligns with prior research, which shows, for
example, that drivers with different levels of experience respond
differently to hazards [8, 9], and that older drivers tend to perceive
driving situations as more risky [49]. However, as noted by Lorenz
et al. [28], current modeling approaches often overlook such demo-
graphic information. These insights suggest a promising direction
for future work: incorporating individual differences into model
design may enable more personalized and accurate predictions of
perceived risk.

Our approach further shows that our models did a better job in
predicting perceived risk for novice drivers than for experienced
drivers. For the latter group the prediction error was more than 5
points worse. This might be an indication that experienced drivers
assess risk on a more nuanced level than novices do. Interestingly,
an increase in the number of cars per scene is associated with a
decrease in predicted risk, while a higher number of pedestrians is
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correlated with an increase in perceived risk. One possible explana-
tion is that scenes with many cars may serve as a proxy for larger,
more structured streets, with clearer traffic rules, fewer driveways,
and limited pedestrian crossings, and thus appear safer. A related
finding was reported by De Winter et al. [10], who observed that
higher vehicle speeds in their model were associated with lower
perceived risk. They attribute this counterintuitive result to the
concept of self-explaining roads which aims at delivering a road en-
vironment that aligns with drivers’ expectations. Accordingly, roads
with higher speed limits tend to be more structured and predictable,
with clearer traffic patterns, which can lead to a lower perception of
risk. Furthermore, our results indicate that the proximity to other
road users, measured by the size of their bounding boxes, is a strong
predictor of perceived risk. This finding is consistent with both com-
puter vision-based approaches [10] and experimental studies [25].
In contrast to De Winter et al. [10], who used only static images,
our study considers the slope of the bounding box size indicating
if an object is approaching or moving away. However, this feature
did not significantly impact model predictions.

5.2 Visual Sampling Behavior is a Weak
Predictor of Perceived Risk in Driving

Our qualitative analysis (see subsection 4.1) and insights from ex-
plainable machine learning (see subsection 4.3) suggest that per-
ceived risk is shaped more by scene characteristics and individual
differences than by the specific objects people focus on. Although
participants tend to fixate on similar objects in highly critical events
(see Figure 3), this shared gaze behavior also appears in scenarios
where risk assessments diverge (Sup. HeatMap), indicating that
shared visual focus does not imply shared risk perception. This is
reflected in our modeling results: adding gaze data did not improve
prediction accuracy (Table 1), suggesting it is not a strong predic-
tor. Global explanations from our XGBoost model reinforce this,
showing that scene-related and demographic features contribute
more to predictions than gaze-related ones. Only 2 of the top 10
predictive features involve gaze (Figure 4).

In our experiment, participants continuously scanned for risk
cues while rating perceived risk in real time. In unanimously critical
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scenes, visual entropy was low (Figure 3), indicating that partici-
pants focused on the same key objects. This suggests such objects
are perceived as high value as suggested in the SEEV model [52]. Yet,
this did not translate into better model performance. Why? Because
low visual entropy also occurs in scenes with widely varying risk
ratings. In these cases, participants may expect relevant behavior
from the object (high expectancy) but do not assign it much value,
thus reducing its influence on perceived risk. Although our models
take into account where participants direct their gaze, they do not
capture why they look there or how they interpret what they see.
Individual factors, such as age and driving experience, as well as
latent personal factors that our model does not explicitly account
for, play a larger role.

From an SA perspective [20, 21], our entropy findings suggest
consistent perception (level 1 SA) for some situations, but high
variability in comprehension and projection (SA levels 2 and 3), re-
inforcing our finding that risk perception is highly individual and
experience-driven. Thus, while visual attention helps explain criti-
cal scenarios post-hoc, it is a weak standalone predictor of perceived
risk in driving contexts.

5.3 Good and Bad News for Risk-Adaptive
Automated Driving Technology

While automated vehicles are built to drive safely, they may over-
look how safe the human driver feels. Predicting perceived risk
using only the vehicle’s sensor data could help tailor the driving ex-
perience, without the need for complex driver monitoring systems.
In this regard, our results are good and bad news at the same time.
On the one hand, the results suggest that incorporating fixation
information is unlikely to significantly improve prediction accu-
racy, which can be considered encouraging, given that accurate
and non-intrusive eye-tracking remains difficult to implement in
vehicle cockpits. On the other hand, our modeling results highlight
a key challenge: predicting perceived risk is inherently difficult,
as individual risk perception varies widely. This variability makes
it hard for manufacturers to create a one-size-fits-all model based
solely on vehicle sensor data, such as inputs from cameras or radar.
However, our cluster-based approach (compare Table 1) indicates
that prediction accuracy can be improved for certain subgroups
(novices in our case). Thus one potential solution could be to per-
sonalize risk prediction models by incorporating user-specific data
obtained through connectivity services which are now commonly
offered by most manufacturers [19]. These platforms could pro-
vide valuable contextual information about the driver’s preferences,
habits, or past behavior, enabling more adaptive and individualized
safety systems. Furthermore, manufacturers have the advantage
that they can compute the epistemic component of perceived risk
such as the time to collision [22] which can be calculated based
on measures retrieved from Advanced Driver Assistance Systems

(ADAS).

5.4 Limitations and Future Work

Several limitations must be considered when interpreting the re-
sults of our study. First of all, our study is based on dashcam videos
of traffic scenes shown on a large screen in VR, so participants
could not utilize rearview or side mirrors or check the blind spots
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by turning their head. Future work could address this point by re-
peating the same experiment with 360° videos. Another limitation
is that traffic is very diverse. We capture only a small amount of
these situations. This shows in our leave-one-video-out predictions
on individual participants, where the standard deviation in pre-
diction is high. The training error is very low, but the evaluation
error is very high for some videos, indicating low generalization
capabilities. This is due to the fact that some situations in the test
set are very different from what the model was trained on. Future
work could address this issue by extending this dataset. To facilitate
this process, we are making all of our artifacts available and hereby
invite other researchers to contact us if they would like to conduct
a similar study that would help expand this dataset.

Due to the small participant pool and the limited scenarios, our
model could also be prone to overfitting. We took care to circumvent
this by including as less as identifying participants’ information
as possible in the dataset and aggregated them into more general
bins. However, a larger and more diverse participant pool would be
valuable to validate our findings on a broader scale. Due to potential
overfitting issues, the importance of demographic features must be
partially attributed to latent individual differences, such as personal
experiences, that our models do not account for, but which the
explicit features we use serve as a proxy for.

As mentioned throughout the paper, we did not incorporate
gaze-based metrics, such as fixation count or pupil diameter, into
our models. While these features have been shown to predict risk
or workload [5, 34], we were interested in where people look, what
they focus on, and how these factors contribute to perceived risk.
However, if the main goal is prediction accuracy, including such
gaze-based metrics is a promising next step.

Open Science Statement. To improve openness and trans-
parency in automotive user research [17], we make all research
artifacts, including a description on how to use and extend this
dataset, available on OSF: https://osf.io/cwd6h.
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