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A B S T R A C T

With modern infotainment systems, drivers are increasingly tempted to engage in secondary tasks while
driving. Since distracted driving is already one of the main causes of fatal accidents, in-vehicle touchscreens
must be as little distracting as possible. To ensure that these systems are safe to use, they undergo elaborate
and expensive empirical testing, requiring fully functional prototypes. Thus, early-stage methods informing
designers about the implication their design may have on driver distraction are of great value. This paper
presents a machine learning method that, based on anticipated usage scenarios, predicts the visual demand
of in-vehicle touchscreen interactions and provides local and global explanations of the factors influencing
drivers’ visual attention allocation. The approach is based on large-scale natural driving data continuously
collected from production line vehicles and employs the SHapley Additive exPlanation (SHAP) method to
provide explanations leveraging informed design decisions. Our approach is more accurate than related work
and identifies interactions during which long glances occur with 68 % accuracy and predicts the total glance
duration with a mean error of 2.4 s. Our explanations replicate the results of various recent studies and
provide fast and easily accessible insights into the effect of UI elements, driving automation, and vehicle
speed on driver distraction. The system can not only help designers to evaluate current designs but also
help them to better anticipate and understand the implications their design decisions might have on future
designs.
1. Introduction

Nowadays, large center stack touchscreens, like the ones found in
Tesla’s Model 31 or the Mercedes-Benz EQS2 are the main interface
between the driver and the In-Vehicle Information Systems (IVISs). Dur-
ing the interaction, drivers need to take their eyes off the road to scan
the information presented on the screen. Thus, they distribute their
visual attention between the primary driving task and the secondary
touchscreen task. This increases the risk of a crash significantly (Dingus
et al., 2016; Green, 1999), in particular for eyes-off-road durations
longer than two seconds (Klauer et al., 2006). With IVISs becoming
more complex and incorporating an ever-increasing amount of func-
tionalities, drivers have more options than ever to interact with them
while driving. The temptation to engage in non-driving related tasks is
further increased by constantly improving driving automation features.
During partially automated driving, drivers tend to engage more often
in non-driving related tasks, even though they are still supposed to
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1 https://www.tesla.com/model3
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monitor the vehicle (Carsten et al., 2012; de Winter et al., 2014; Ebel
et al., 2022). To ensure that IVISs are safe to use, they are subject
to strict regulations and elaborate test protocols. Automotive Original
Equipment Manufacturers (OEMs) conduct expensive empirical user
studies in artificial settings (e.g., driving simulators) to test the safety
of the systems. However, driving simulator studies can only replicate
real-world driving behavior to a certain degree (Riener, 2011) and
often lack absolute validity (Kaptein et al., 1996; Fisher, 2011). Fur-
thermore, to evaluate a new IVISs design in a user study, all relevant
features need to be implemented in a functional prototype. Although
such measures will remain necessary, automotive UX experts require
explainable evaluation methods (Ebel et al., 2020) allowing them to
identify potentially distracting interaction patterns already in the early
design stages. Such automated methods can facilitate the development
of interaction concepts that are safe by design and, therefore, less likely
to fail final evaluations.
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Current approaches that predict driver distraction based on user
interaction information are derived from methods like Fitt’s Law (Fitts,
1954) or the Keystroke-Level Model (KLM) (Card et al., 1980), where
the time of certain operations is summed up to predict the total
time of a task. The glance behavior is then derived from this metric.
Although these models are limited by their cumulative linear nature
and require experts to manually specify each task, they are highly inter-
pretable. With more complex models, interpretability is often sacrificed
for increased accuracy, highlighting the inherent trade-off between
the two (Lundberg and Lee, 2017). However, without explanations,
scientific findings may remain hidden, user acceptance suffers, and
the learning effect is limited (Molnar, 2020; Doshi-Velez and Kim,
2017). To facilitate data-informed design decisions, it is not only
important to predict potentially dangerous interaction sequences but
also to understand which interactions force drivers to take their eyes
off the road.

2. Background and related work

In this section, we introduce the concept of visual demand. We
explain how to measure it and present computational models of vi-
sual demand. Finally, we introduce SHAP, an approach to generate
explanations for machine learning predictions.

2.1. Visual demand of secondary task engagements

Visual demand is the ‘‘degree or quantity of visual activity required to
extract information from an object to perform a specific task’’ (ISO15007,
2020). While driving a car, visual distraction from the primary driving
task by engaging in a secondary task, compromises driving perfor-
mance and safety (Engström et al., 2005; Donmez et al., 2010; Liang
and Lee, 2010; Green, 1999; Klauer et al., 2006; Horrey and Wick-
ens, 2007). This also applies to higher automation levels of driving
automation (SAEJ3016, 2021). Recent research shows that takeover
performance after a stretch of automated driving is significantly af-
fected by the visual-cognitive load of the secondary task (Wintersberger
et al., 2021) and distraction in general (Merlhiot and Bueno, 2021). In
ISO:15007:2020 (ISO15007, 2020) multiple metrics to measure visual
demand are described. Two of the metrics that are widely used are
the Total Glance Duration (TGD) and the average glance duration.
The TGD is the ‘‘summation of all glance durations to an area of
interest (or set of related areas of interest) during a condition task,
subtask or sub-subtask’’. The average glance duration is the ‘‘mean
duration of all glance durations to an area of interest (or set of related
areas of interest) during a condition task, subtask or sub-subtask)’’.
Further research (Horrey and Wickens, 2007) shows that single longer-
than-normal glances, especially those longer than two seconds (Klauer
et al., 2006), highly correlate with reduced driving safety. This is also
mentioned in the ‘‘Visual-Manual NHTSA Driver Distraction Guidelines
for In-Vehicle Electronic Devices’’ (NHTSA, 2012). However, according
to Victor et al. (2014) there is not a single metric that can fully
describe the relationship between glance behavior and risk, but rather
a combination of metrics is necessary. Burns et al. (2010) additionally
argue that whereas any single measure only provides an incomplete
assessment of distraction, empirically supported measures such as the
above-introduced ones should be included for decision-making as early
as possible in the design process.

2.2. Visual demand prediction

Various methods aim to predict visual-manual distraction while
driving (Kanaan et al., 2019; Li et al., 2018; Wollmer et al., 2011;
Li et al., 2020; Risteska et al., 2021). Most of them focus on driver
distraction detection to warn the driver when a potentially dangerous
situation is detected. These approaches are often based on naturalistic
driving data and employ various machine learning methods. They
2

utilize driving performance metrics (e.g., speed or steering wheel an-
gle) (Kanaan et al., 2019; Li et al., 2018; Wollmer et al., 2011),
environmental data (e.g., traffic conditions) (Risteska et al., 2021), or
video data of the driver (Li et al., 2020; Kutila et al., 2007). While
these approaches show promising results, they do not incorporate any
information on how drivers interacted with secondary devices like
mobile phones or IVISs. Therefore, they do not generate insights into
the visual demand of specific UI elements or interactions.

However, various approaches exist that model the visual demand of
in-vehicle Human-Machine Interfaces (HMIs) based on user interactions
with specific UI elements. They explain the effect specific interactions
have on drivers’ visual distraction. These approaches focus on the
understanding of interaction behavior and aim to identify distracting
features of in-vehicle HMIs. Their purpose is to inform designers and
researchers in the early stages of the development process about possi-
ble implications their design might have on driver distraction. In this
work, we focus on the latter and provide an overview of the current
state-of-the-art in this domain.

Most of the approaches that predict visual demand, based on user
interactions, are bottom-up approaches derived from the KLM modeling
technique (Card et al., 1980; Card, 1983). In such approaches, an entire
task is decomposed into a sequence of specific primitive operators
(e.g., pressing a button, or searching in a list). The interaction durations
for each operator are then determined empirically (Schneegaß et al.,
2011). The overall time on task predictions are then equal to the sum of
the individual interaction durations of the respective operators occur-
ring in the task. The KLM technique was originally developed to predict
processing times in computer-assisted office work, but multiple adjust-
ments were made to assess IVISs (Schneegaß et al., 2011; Manes, 1997;
Lee et al., 2019). However, most of these approaches focus on task
completion times rather than visual demand. Pettitt et al. (2007) were
the first to propose a KLM-based approach to predict visual demand.
They show a high correlation between predicted values and measures
from an occlusion experiment. The first KLM-based method to directly
predict visual demand is presented by Purucker et al. (2017), who pro-
pose a task-specific KLM model. They argue that using fixed operators
to model innovative and new hardware can only work to a limited
extent. Whereas their approach can only predict TGD, Large et al.
(2017b) propose a method that can additionally predict the number
of glances and the mean glance duration. Their information-theoretic
approach is based on the Hick–Hyman Law for decision/search time
and Fitt’s Law for pointing time. Whereas the results achieved by the
presented KLM-based approaches are promising, they all share several
drawbacks. First, due to their cumulative and linear character, the
models are not suited to model potential (non-linear) dependencies
between different user interactions or driving situations. For example,
the difference in the visual demand between selecting an element out
of a list and tapping a button might be negligible for lower speeds but
significant for higher speeds. Additionally, the length of an interaction
sequence in combination with specific interactions might also influence
visual demand in a non-linear and non-additive way (Purucker et al.,
2017). For example, if the driver presses two buttons that are located
close to each other, it unlikely results in a doubling of the TGD as the
driver might perform both interactions during one glance. Second, the
model parameters of the introduced approaches are derived from em-
pirical testing in restricted driving scenarios using driving simulators of
different fidelity, and a relatively small number of participants. This can
likely lead to predictions being very context-dependent, as also noted
by Large et al. (2017b) and shown in a real-world driving experiment
evaluating the applicability of Fitt’s Law (Pampel et al., 2019). Third,
current approaches do not consider the effect the driving situation has
on the visual demand. Research shows that drivers modulate their task
engagement and visual attention based on driving demands (Risteska
et al., 2021) and the degree of assisted driving (Morando et al., 2021;
Tsimhoni and Green, 2001; Gaspar and Carney, 2019; Large et al.,

2017a) making it important to include such parameters.
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A different approach is taken by Kujala and Salvucci (2015) who
propose a model based on the ACT-R cognitive model architecture (An-
derson et al., 2004). Their approach aims to represent the visual sam-
pling strategy of drivers. They argue that drivers adjust their glances
based on a time limit that is dependent on the current driving per-
formance. Whereas the model can predict multiple facets of visual
demand, only grid and list layouts are considered. Furthermore, the
driving scenario is fairly simple and the evaluation shows significant
drawbacks in prediction accuracy, especially concerning the detection
of long glances.

We argue that the utilization of large natural driving and interaction
data in combination with machine learning approaches that can model
non-linear relationships can be a promising step toward more accurate
and holistically applicable solutions. Machine learning approaches have
led to high-quality predictions in the domain of distraction detection
methods as introduced above.

However, two main factors prevent these approaches from gener-
ating valuable insights into how specific design elements affect visual
demand. First, interaction data is not yet available in a similar quantity
as driving data. Second, all the above-presented machine learning
approaches lack explainability. Whereas certain performance metrics
are reported, the models remain a black box without providing insights
on the features that are decisive for the predictions.

2.3. Explainable predictions with SHAP

Explainable AI (XAI) aims to make machine learning models more
transparent by providing human-understandable (interpretable) infor-
mation, explaining the behavior and processes of machine learning
models (Barredo Arrieta et al., 2020; Liao et al., 2020). Explanations
serve as an interface between the human and the model (Barredo Ar-
rieta et al., 2020) and can be valuable in various applications (Wie-
gand et al., 2020; Wang and An, 2021). Explanations can enhance
scientific understanding (Doshi-Velez and Kim, 2017), increase user
trust (Shin, 2021; Lipton, 2018), and can help to infer causal rela-
tions in data (Verma et al., 2020). For the task at hand explainable
predictions are of particular interest because the goal is not only to
make predictions of the visual demand but also to draw conclusions
about the impact of specific UI elements, gestures, and varying driving
situations. The goal of this approach is to enable AI-assisted decision-
making (Zhang et al., 2020), optimizing a joint decision based on the
domain knowledge of the human expert and the insights generated by
the model prediction and accompanying explanation.

SHAP, proposed by Lundberg and Lee (2017) is a method based
on Shapley values from coalitional game theory (Shapley, 1953). The
SHAP method provides local and global explanations for arbitrary pre-
dictive models. SHAP belongs to the class of additive feature attribution
methods. The main idea is to use an interpretable explanation model
𝑔(𝑧′) in the form of a linear function such that the model’s prediction
of a certain instance is equal to the sum of its feature contributions
𝜙𝑖 ∈ R (Molnar, 2020):

𝑔(𝑧′) = 𝜙0 +
𝑀
∑

𝑖=1
𝜙𝑖𝑧

′
𝑖 , (1)

where 𝑧′ ∈ {0, 1}𝑀 with 𝑧′𝑖 represents the presence of feature 𝑖, 𝜙0
epresents the models output in case no feature is present, and 𝑀 is
he number of input features (Lundberg et al., 2020).

Lundberg and Lee (2017) further state that a single unique solution
xists that follows the definition of additive feature attribution methods
see (1)) and satisfies the properties of local accuracy, missingness,
nd consistency. Local accuracy describes that the sum of the feature
ttributions is equal to the prediction of the original model. Missingness
escribes that a missing feature (𝑧𝑖 = 0) gets assigned an attribution of
ero and consistency states that when changing a model such that it
s more dependent on a certain feature, the attribution of that feature
3

hould not decrease.
The only possible solution as described by Lundberg and Lee (2017)
s given by the SHAP values:

𝑖 =
∑

𝑆⊆𝑁⧵{𝑖}

|𝑆|!(|𝑀| − |𝑆| − 1)!
𝑀!

(

𝑓𝑥(𝑆 ∪ {𝑖}) − 𝑓𝑥(𝑆)
)

, (2)

with 𝑆 being the set of non-zero indexes in 𝑧′, 𝑓𝑥(𝑆) being the expected
value of the function conditioned on a subset 𝑆 of the input features,
and 𝑁 being the set of all input features.

Multiple different approaches exist to approximate SHAP values for
different kinds of machine learning models. However, in this study, we
use TreeSHAP (Lundberg et al., 2020) which allows the computation of
exact SHAP values for tree-based approaches.

Compared to approaches like LIME (Ribeiro et al., 2016) or ap-
proaches specific to tree-based models like permutation importance
of feature impurity calculations, SHAP has many advantages. Due to
the solid foundation in game theory (Molnar, 2020), SHAP values
come with theoretical guarantees about consistency and local accuracy.
Additionally, local and global explanations are consistent, SHAP values
indicate whether the contribution of each feature is positive or nega-
tive, and Lundberg et al. (2018) show a greater overlap of SHAP values
and human intuition (Lundberg and Lee, 2017; Lundberg et al., 2020).

3. Proposed approach

In this work, we showcase how to effectively use machine learn-
ing methods to predict and explain the visual demand of in-vehicle
touchscreen interactions based on large naturalistic driving data. The
contribution of this paper is two-fold: First, we propose a machine
learning approach predicting the visual demand of in-vehicle touch-
screen interactions based on the type of interaction and the associated
driving parameters. Second, we apply the SHAP method (Lundberg
and Lee, 2017) to explain the predictions and to visualize how user
interactions, vehicle speed, steering wheel angle, and automation level,
affect drivers’ long glance probability and TGD. In the following, we
introduce several definitions that will be used in the remainder of the
paper. Furthermore, we describe the data collection, data processing,
and modeling procedures in detail.

3.1. Definitions and problem statement

The goal of this approach is to predict drivers’ visual attention allo-
cation based on user interactions and the associated driving parameters.
To do so, we model drivers’ secondary task engagements by combining
interaction sequences, driving sequences, and glance sequences. These
concepts are introduced in the following.3

Interaction Sequence. An interaction sequence is defined as a set
of subsequent touchscreen interactions performed by the driver. The
duration between two subsequent interactions must be smaller than
𝛥𝑡𝑚𝑎𝑥.

Glance Sequence. A glance sequence is defined as a set of subse-
quent driver glances toward a predefined Area of Interest (AOI).

Driving Sequence. A driving sequence is a sequence of driving
data observations. Each observation consists of the vehicle speed, the
steering wheel angle, and the status of Adaptive Cruise Control (ACC)
and Steering Assist (SA).

Secondary Task Engagement. A secondary task engagement 𝑆
escribes the touchscreen interactions, the driving behavior, and the
lance behavior of a driver while interacting with the center stack
ouchscreen. We consider the vehicle speed and steering wheel angle
rom 𝑡𝑏 seconds before the first until 𝑡𝑏 seconds after the last inter-
ction. Furthermore, all glances that fall in between the first and last
nteraction are considered.

3 For the formal definitions refer A.1.
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Fig. 1. Schematic overview on how secondary task engagements 𝑆𝑛 are extracted from driving sequences (solid black line), glance sequences (colored rectangles), and interaction
equences (gray dots). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Long Glance Prediction Task. The long glance prediction task
escribes the task of predicting if the driver will look at the center
tack touchscreen for more than two seconds during a secondary task
ngagement.
TGD Prediction Task. The TGD prediction task describes the task

f predicting the drivers’ total glance duration toward the center stack
ouchscreen during a secondary task engagement.

.2. Data collection

The data used in this study was collected over the air from over 100
est cars and five different car models via the Mercedes-Benz telematics
ata logging framework. A more detailed description of the logging
echanism is provided by Ebel et al. (2021a). The data collection pe-

iod ranged from mid-October 2021 to mid-January 2022. All company
nternal test cars with the latest software architecture, an eye-tracker,
nd ACC and SA functionality, contributed to the data collection. The
est cars were used for various, mostly not UI-related test drives, but
lso for leisure drives of employees. While the cars were driven all over
urope, most of the trips were recorded in Germany. We leveraged the
ata collection and processing framework of Mercedes-Benz, to collect
ouchscreen interactions, driving data (vehicle speed, steering wheel
ngle, and level of driving automation), and eye-tracking data. We did
ot collect any demographic or environmental data.

The touchscreen interactions were collected from the UI software,
here a datapoint was logged each time the driver touched the center

tack touchscreen. A datapoint consists of the touched UI element,
he start and end position of all fingers used for the gesture, and a
imestamp.

The glance data was acquired via a stereo camera located in the
nstrument cluster behind the steering wheel. The system is already
ommercialized and available in production line vehicles. As with most
emote eye trackers, gaze detection is based on the pupil-corneal reflec-
ion technique (Merchant, 1967). In this method, the pupil center is
racked in relation to the position of the corneal reflection (Hutchinson
t al., 1989). The driver’s field of view is divided into different AOIs
nd a new glance is collected each time the focus of the driver switches
etween AOIs. Across all conditions, the average true positive rate for
4

each of the AOIs is above 90 percent. The system captures no raw video
data.

All driving-related data was directly collected from the Controller
Area Network (CAN) bus. The continuous signals (vehicle speed and
steering wheel angle) were collected with a frequency 4Hz, and the
event-based signals (ACC, SA, and seat belt information) were collected
on change. ACC automatically adjusts the vehicle speed based on speed
limits and the vehicles ahead. SA actively supports lateral control to
keep the car centered in the lane. Both systems operate at speeds
between 0 km/h and 210 km/h.

3.3. Data processing

In the following we describe how we process the data such that the
respective sequences follow the definitions given in 3.1. Fig. 1 shows
a schematic overview describing the data synthesis of the individual
sequences. For clarity, we only display the vehicle speed (solid black
line), representative of the other driving data.

3.3.1. Interaction data
In controlled experiments, participants are instructed to perform

pre-defined tasks that are specified by the experimenter. In such set-
tings, it is straightforward to map user interactions and tasks. However,
in the observational setting at hand, no task boundaries are defined.
We do not know which task the driver intended to complete during
the secondary task engagement, nor are the start or end times defined.
One possibility to extract interaction sequences would be to consider all
interactions that occurred during one trip. However, this would lead
to very long interaction sequences with dense clusters of interactions
sparsely distributed over a long period of time. To solve this problem,
we set the maximum update interval, as defined in 3.1 to 10 s, 𝛥𝑡𝑚𝑎𝑥 =
10 s. We assume that after a period of 10 s with no interaction the driver
disengaged from the secondary task and the interaction sequence ended
after the last interaction. We then consider the next interaction as the
starting point of a new interaction sequence. We argue that the 10-
second assumption is valid, because both the distribution of interaction
sequence durations and the distribution of total glance times toward
the center stack touchscreen match well with values reported in the

literature (NHTSA, 2012; Angell et al., 2008).



Accident Analysis and Prevention 183 (2023) 106956P. Ebel et al.
Table 1
Overview of the final input features describing a secondary task engagement.

Feature Description

Interaction Data
𝑛Button # Interactions with regular buttons (e.g., push or radio buttons)
𝑛List # Interactions with lists (e.g., when choosing a suggested destination)
𝑛Map # Interactions with a map viewer (e.g., when zooming or dragging the navigation map)
𝑛Slider # Interactions with slider elements (e.g., when changing the volume)
𝑛Homebar # Interactions with the static homebar on the bottom of the screen
𝑛CoverFlow # Interactions with cover flow widgets (e.g., when scrolling through albums covers)
𝑛AppIcon # Interactions with app icons on the home screen
𝑛Tab # Interactions with tab bars
𝑛Keyboard # Interactions on the keyboard or number pad (e.g., when entering a destination)
𝑛Browser # Interactions within the web browser
𝑛RemoteUI # Interactions within Apple Car Play or Android Auto
𝑛ControlBar # Interactions with a control bar, displayed as a small overlay on various screens
𝑛PopUp # Interactions with pop-up element
𝑛ClickGuard # Interactions with non-interactable background elements
𝑛Other # Interactions with a UI element that does not fit any of the above categories
𝑛Unknown # Interactions with a UI element for which the identifier could not be extracted
𝑛Tap # Tap gestures
𝑛Drag # Drag gestures
𝑛Multitouch # Multitouch gestures
𝑑avg Average distance between two consecutive interactions in px
𝑁 Number of interactions

Driving Data
𝑣avg Average vehicle speed in km/h
𝜃avg Average steering wheel angle in ◦

𝑎acc Status of the adaptive cruise control 𝑎acc ∈ {0, 1}
𝑎sa Status of the steering assist 𝑎sa ∈ {0, 1}
For all remaining interactions, we compute the gesture type (Tap,
Drag, and Multitouch) and distance between two interactions from the
positioning information of the fingers. Finally, we map each UI ele-
ment to an overarching element type (see Table 1). This step reduces
data sparsity and ensures that the approach can produce generalizable
statements about specific element types.

3.3.2. Glance data
We apply multiple filtering steps to improve the data quality of

the glance data. The filtering is partially adapted from related re-
search (Morando et al., 2019). In the first step, the glance information
is aggregated into broader AOIs (On-Road, Off-Road, Center Stack).
According to ISO 15007-1:2020 (ISO15007, 2020), we consider all
glances that are not directly directed on the road (e.g., glances in the
rear-view mirrors) as off-road glances. As we are explicitly interested
in glances toward the center stack touchscreen, we distinguish these
glances from regular off-road glances. Second, as described in Sec-
tion 3.1, we consider all glances between the first and last touchscreen
interaction of the associated interaction sequence. Fragmented glances
at the beginning or end of an interaction sequence that start before
the first interaction or end after the last interaction are considered as
a whole. Third, short periods (less than 300ms) of tracking loss are
interpolated if the AOI preceding the loss is equal to the one succeeding
it. Loss of tracking can occur due to changing lighting conditions,
reflections in glasses, or when the camera view is blocked by the
driver’s hands on the steering wheel. Fourth, according to ISO 15007-
1:2020 (ISO15007, 2020) glances shorter than 120ms are interpolated
because shorter fixations to an area of interest are physically not possi-
ble. Fifth, following the same argumentation, loss of tracking between
different AOIs shorter than 120ms is interpolated as well. Sixth, eye-
lid closures shorter than 500ms are interpolated to remove blinks as
suggested by ISO 15007-1:2020 (ISO15007, 2020).

3.3.3. Driving data
The driving data consists of continuous data and event-based data.
5

In the first step, we extract the data that is relevant for the associated
interaction sequences. To get a more stable estimate of the driving
parameters in case of very short interaction sequences that might
only consist of a single interaction, we consider steering wheel and
vehicle speed data starting two seconds before the first interaction
until two seconds after the last interaction of an interaction sequence
(𝑡𝑏 = 2 s). After data extraction, sequences with missing values or error
values, and sequences that show deviations in the logging frequency
are discarded.

3.3.4. Data aggregation and final filtering
In total, we extracted 322,425 touchscreen sequences. We obtained

valid speed data for 145,973 sequences, valid steering data for 81,150
sequences, and valid glance data for 111,792 sequences. After in-
dividual processing, we computed the intersection of the individual
data sources resulting in 30,158 complete secondary task engagements.
Most of the sequences were excluded either because they were gen-
erated on a test bench (no driving data was available), the car was
not equipped with a camera, or because the sampling requirements
were violated due to a loss of data connection. In the second stage
of data processing, we apply further filtering steps to increase data
quality. To prevent the data from becoming too sparse, we discarded
342 secondary task engagements with more than 41 interactions (𝑁 >
41 corresponds to the 99th percentile of the distribution of 𝑁). These
secondary task engagements can be considered outliers without pro-
viding additional benefits for the use case at hand. We further discard
16,864 secondary task engagements where a passenger was present
because they also tend to interact with the center stack touchscreen.
These interactions cannot be mapped to driver glances and would
skew the data toward fewer and shorter glances per secondary task
engagement with many interactions logged that did not originate from
the driver. Furthermore, we discarded 809 engagements during which
the car came to a full stop and one sequence due to a remaining speed
error. After this processing step, we obtained the final set of 12,142
secondary task engagements. Finally, we compute summary statistics
for the secondary task engagements to generate the final set of features
as described in Table 1. These features serve as input to the models

introduced in the following.
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3.4. Modeling

As formulated in the problem statement we solve one classification
task (long glance prediction) and one regression task (TGD predic-
tion). For each of the tasks, we compare a Baseline approach and
a Logisitc/Linear Regression approach against three machine learning
approaches, namely Random Forests, Gradient Boosting Trees, and Feed-
orward Neural Networks (FNNs). In the long glance prediction task, the
aseline approach randomly predicts one of the two classes (i.e. in a

balanced dataset the probability of correctly predicting a long glance
is roughly 50 %). In the TGD prediction task, the baseline approach
predicts the median TGD of the training dataset. The parameters of
the machine learning-based methods are chosen based on extensive
hyperparameter optimization using random search.4

4. Evaluation

In this section we present the final dataset, put the experimental
results in perspective, and elaborate on the explainable predictions
generated by applying the SHAP method.

4.1. Dataset

The final dataset consists of 12,142 secondary task engagements
sampled from 3,046 individual trips. The majority of secondary task
engagements were collected from the Mercedes-Benz S-Class (7,342
secondary task engagements), EQS (3604), and EQE (824) models. The
cars were equipped with a 17.7", 12.8", or 11.9" center stack touch-
screen with similar pixel density. In total, 61,943 touch interactions
and 119,770 individual glances were collected. The median trip length
is 34.28 min (𝑄1 = 17.49, 𝑄3 = 66.58). Specific glance and interaction
tatistics of the final dataset are presented in Fig. 2.5

In Figs. 2(e) and 2(f), the glance duration distribution during sec-
ndary task engagements (blue) is plotted against the glance duration
istribution over all sessions independent of the driver being engaged
n a secondary task (orange). This allows a comparison with approaches
hat utilize data collected irrespective if the driver being engaged in a
econdary task or not.

We further compare our data with the manual driving baseline
f the 100-Car Study (Dingus et al., 2006) (data provided by Custer
2018), the SHRP2 (Victor et al., 2014) (data available in Bärgman
t al. (2015)) and the data reported in the work of Morando et al.
2019) (provided by the authors upon request). Figs. 2(h) and 2(i)
how the glance distribution of on-road and off-road glances for the
espective datasets. The glance distributions were truncated at 6 s since
his corresponds to the length of the segments in the 100-car baseline
ataset. The visual comparison shows that the off-road glance duration
istribution matches well with the data reported in the three related
tudies. However, the on-road glances show some differences between
ur data and the data reported in the 100-Car study and the study
f Morando et al. (2019). Whereas the mode is similar for all three
atasets, the on-road glances in our study tend to be shorter compared
o the other two studies. The potential reasons for this are manifold.
or example, Morando et al. (2019) only consider driving segments of
ery controlled driving by excluding curved driving, lane changes, and
riving segments with a vehicle speed under 60 km/h. In these rather
alm driving situations, drivers need to switch less often between the
oad and off-road regions such as mirrors or side windows resulting
n longer continuous on-road glances. The differences with regard to
he 100-Car study could be due to the fact that the data is now almost
0 years old and only covers manual driving. The technology of the
ehicles at that time, and in particular that of the infotainment and

4 For more details on the search space refer to: A.2.
5 For the full dataset statistics refer to A.3.
6

assistance systems, was fundamentally different from that in today’s ve-
hicles. However, considering the differences in the data collection, the
comparison suggests that our data collection and processing pipeline
produces representative data.

Fig. 2(e) indicates that during touchscreen] interactions, drivers
need to distribute their visual attention between the road and the center
stack resulting to shorter on-road glances. On the other hand, center
stack glances during secondary task engagements tend to be longer than
general center stack glances (Fig. 2(f)). Through Fig. 2(b), we see that
roughly 25 % of all sequences consist of only a single interaction. This
results in many short secondary task engagements that only consist
of a single glance toward the center stack (Fig. 2(d)). These short
engagements are part of real-world user behavior. However, they are
often not represented in laboratory studies where only a few predefined
tasks are evaluated. We argue that it is still relevant to analyze these
short engagements and therefore decide to consider them. For the long
glance classification task, we balanced the dataset by applying random
undersampling. The resulting dataset consists of 4816 sequences for
each class.

4.2. Experimental results

We evaluate the regression models using a repeated 10-fold cross-
validation (Kohavi, 1995) and the classification models using a strat-
ified 10-fold cross-validation. The results are given in Table 2. The
models were fitted on the full set of input features given in Table 1.

The machine learning-based approaches outperform the Baseline ap-
proach and the Logistic and Linear Regression approaches in both tasks.
The differences in the prediction accuracy support our assumption that
neither of the problems at hand can be considered a linear problem and
that interaction effects between different features exist. The machine
learning models provide similar results. However, the Random Forest
approaches offer two desirable properties making them in particular
suitable for the use case at hand. First, the TreeSHAP (Lundberg et al.,
2020) algorithm allows efficient computation of exact SHAP values for
Random Forest models. Second, Random Forests can be run in parallel,
making them suitable for future use cases when they are deployed on
data of a whole production fleet. Thus, we choose the Random Forest
models for the following explanation generation.

4.3. Explainable predictions

While the above-presented results provide a good measure of predic-
tion accuracy, they are of limited value when it comes to understanding
human behavior. To truly support researchers and practitioners in
the design process to foster a deeper understanding of drivers’ visual
attention allocation, it needs more than just predicting whether a
new user flow might cause too much distraction (Ebel et al., 2021b).
For this reason, we employ SHAP. SHAP values represent the fea-
tures’ contribution to the model’s output, providing a local explanation
for each input sample. By combining many local explanations, one
can represent global structures producing detailed insights into model
behavior (Lundberg et al., 2020).

4.3.1. Local explanations
Fig. 3 displays the explanations for one long glance prediction and

one TGD prediction. These force plots represent a particular model out-
put as a cumulative effect of feature contributions (i.e. SHAP values).
The length of each bar indicates how much the associated feature value
pushes the model output from the base value toward higher values
(red, to the right) or lower values (blue, to the left). The base value
is computed as the average model output over the training dataset.
The features in each group are sorted based on the magnitude of their
impact and only the most influential features are displayed. The feature

values are shown below the bars. For the long glance prediction, feature
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Fig. 2. Histograms that visualize the glance and interaction data. They show the (a) average speed per secondary task engagement, (b) the number of interactions per secondary
task engagement, (c) the duration of the interaction sequences of a secondary task engagement, and the (d) number of glances toward the touchscreen during per secondary
task engagement. Figure (e) compares the on-road glance duration distribution for glances during a secondary task engagement with glances irrespective whether a touchscreen
interaction was performed or not. Figure (f) establishes the same comparison for glances toward the center stack touchscreen. Figure (g) shows the total glance duration toward
the center stack touchscreen during a secondary task engagement. Figure (h) and (i) compare the probability density functions of the off-road and on-road glance duration from
this study with the 100-Car study, the SHRP2 study (only off-road glances), and the study of Morando et al. (2019).
Table 2
Comparison of the different models.

Model Long Glance Prediction Total Glance Duration Prediction

Accuracy Standard Deviation Mean Absolute Error Standard Deviation

Baseline 50.09 % 1.63 % 4378 ms 177 ms
Logistic/Linear Regression 61.93 % 1.69 % 3778 ms 383 ms
Random Forest 67.53% 1.38% 2437ms 112ms
XGBoost 67.22 % 1.85 % 2385 ms 117 ms
FNN 65.90 % 2.02 % 2443 ms 109 ms
7



Accident Analysis and Prevention 183 (2023) 106956P. Ebel et al.
Fig. 3. Local explanations visualized as force plots.
contributions are displayed as probabilities. For the TGD prediction,
they are shown in milliseconds.

Fig. 3(a) visualizes the explanation of a secondary task engagement
for which the model outputs a long glance probability of 0.38 = 38%.
The long glance probability is pushed to the left because the driver
only performed 4 interactions (𝑁 = 4) and drove at a speed of 𝑣avg =
119.641 km∕h while the ACC was deactivated (𝑎acc = 0). On the other
hand, the prediction is pushed to the right because the interactions
were quite distributed over the screen (𝑑avg = 397.288 px) and three
of them were list interactions (𝑛List = 3).

Another secondary task engagement is explained in Fig. 3(b). Here,
the TGD prediction of roughly 7 s is close to the base value because
the positive and negative feature contributions balance each other out.
During this secondary task engagement, the driver performed 13 touch
interactions (𝑁 = 𝑛Tap = 13) while driving with an active ACC (𝑎acc = 1)
at a speed of 70 km/h. If the model would only access this information,
it would predict a TGD of roughly 13 s However, as all interactions
were very close to each other (𝑑avg = 18.224 px) and were all performed
on the homebar (𝑛Homebar = 13 without any list or button interaction
interfering (𝑛List = 0, 𝑛Button = 0, the final model output is only slightly
higher than the average TGD prediction.

These local explanations show that not all features are always
relevant. Predictions for secondary task engagements can be driven
by only a few dominant features. The presented explanations enable
designers and researchers to quickly identify the main forces behind
individual predictions. It also allows them to play around with artificial
input samples and observe how certain changes in the design of a user
flow or the driving situation impact the model’s output.

4.3.2. Global explanations
To understand how the features affect the model’s output on a

global scale, we combine all local explanations of the dataset. Fig. 4
shows the distribution of SHAP values (i.e., the impact of each fea-
ture on a specific prediction as seen in 4.3.1) as a set of beeswarm
plots. Each dot in a row corresponds to an individual secondary task
engagement. The position on the 𝑥-axis represents the effect of the
respective feature on the model’s output. In Fig. 4(a), the SHAP values
are in probability space, and in Fig. 4(b) they represent the impact in
milliseconds. The color indicates the feature value (red is high, blue is
low). The features are sorted by their global importance and only the
19 most important features are displayed individually.

The most important features of the long glance prediction model
(Fig. 4(a)), are the number of interactions 𝑁 , the average distance
between the interactions 𝑑avg, and the number of tap gestures 𝑛Tap.
The more touchscreen interactions a driver performs and the larger
8

the distance between them, the higher the output probability that one
of the associated glances is longer than 2 s. Fig. 4(a) also reveals that
both, the activation of ACC 𝑎acc and SA 𝑎sa, increase the long glance
probability. Whereas the impact of a deactivated assistance system
(blue) is small for all samples, the impact varies if the assistance
systems are active. The horizontal spread suggests that the impact of
assisted driving on visual attention allocation is situation-specific and
depends on further factors like the driving situation and interaction
patterns. The distribution that describes the impact of the vehicle speed
𝑣avg is heavily tailed. For most secondary task engagements at medium
speed, the effect is negative but rather small. High speed values reduce
the predicted long glance probability and low speed values increase it,
respectively. This indicates drivers’ self-regulative behavior.

The number of list interactions 𝑛List is the most important feature
associated with a specific UI element followed by the number of inter-
actions with the homebar 𝑛Homebar. Through Fig. 4(a), we see that their
impact is opposite to each other. Whereas the long glance probability
increases with an increasing number of list interactions, it decreases for
an increasing number of homebar interactions. This suggests that list
interactions tend to be more distracting than interactions on the static
homebar. The impact of interactions with Android Auto or Apple Car
Play 𝑛RemoteUI is similar to the impact of list interactions. In general,
we can observe that most of the SHAP value distributions associated
with a specific class of UI elements are centered around zero with long
tails to one or both sides. This is because most of the elements occur
in only a small portion of secondary task engagements. Whereas this
leads to a relatively low global importance, these features still have a
large impact on specific predictions.

For the TGD prediction model (Fig. 4(b)), 𝑁 and 𝑑avg are also the
two most important features. Their distributions also show similari-
ties to the distributions observed in the long glance prediction task.
However, the impact of the vehicle speed 𝑣avg is inverse compared
to the long glance prediction task. High speed values increase the
TGD prediction and low values decrease the prediction. Both findings
together could be an indication that drivers reduce their single glance
duration at higher speeds, which in turn results in longer TGDs because
more individual glances are required to complete the same task.

Further, we can see that there are almost no negative contributions
associated with UI interaction features. This is due to the fact that
the TGD task is cumulative, and every interaction inevitably implies
a certain amount of visual attention. However, homebar interactions
𝑛Homebar, can negatively affect the model output. In line with the
observations made for the long glance prediction, list interactions 𝑛List,
map interactions 𝑛Map and interactions with Android Auto and Apple
CarPlay 𝑛 can be associated with an increased visual demand
RemoteUI
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Fig. 4. Explanation summary visualized as a set of beeswarm plots. Each beeswarm plot represents the distribution of SHAP values for one feature.
prediction. A comparison between Figs. 4(a) and 4(b) also reveals that
the TGD is not as dependent on the status of the driver assistance
systems as the long glance probability.

To understand the effect of a single feature on the model’s output in
more detail, we plot the SHAP values (y-axis) against the corresponding
feature values (x-axis). Every secondary task engagement in our dataset
is represented as a dot (see Figs. 5 and 6). Vertical dispersion at a
single value on the 𝑥-axis shows that there are non-linear dependencies
between the displayed feature and other features. To highlight the
interaction between features, each dot is colored by the value of the fea-
ture that shows the strongest interaction. The histogram at the bottom
of the plots shows the distribution of datapoints. Fig. 5(a) suggests that
the use of ACC leads to an increased long glance probability prediction.
The interaction with the vehicle speed shows that the effect tends to
increase with increasing vehicle speed. On the other hand, the data
shown in Fig. 5(b) indicates that drivers tend to increase their single
glance durations at lower speeds (below 50 km/h) and decrease them
at higher speeds (above 125 km/h). However, in between those values,
the speed has almost no influence on the model output. This suggests
that drivers self-regulate their visual attention allocation based on what
they consider an appropriate speed. Additionally, the interaction with
the ACC status shows that the impact of the speed on the model output
decreases when ACC is active. The interaction effect with 𝑎acc partially
explains the variance (vertical diversion) in the effect of the vehicle
speed. However, various factors like road type or speed limit that may
also influence how the vehicle speed affects drivers’ visual attention
allocation are not considered in the presented models.

Fig. 5(c) indicates that the number of interactions is positively
correlated with the drivers’ probability to perform a long glance. On
the other hand, Fig. 5(d) suggests that as soon as the distance between
the touch interactions exceeds a certain threshold (roughly 200 px),
the effect on the long glance probability remains constant. Whereas
homebar interactions decrease the probability of the model predicting
9

a long glance (Fig. 5(e)), list interactions (Fig. 5(f)) push the model
toward predicting a long glance. The interaction effect with the number
of interactions additionally indicates that the impact of both elements
becomes larger the higher their proportion within a sequence is.

Fig. 6 visualizes how the different features affect the TGD predic-
tion. While the number of interactions 𝑁 (Fig. 6(c)) is the dominant
feature it is also the feature with the highest interaction effect on all
other features. Compared to Fig. 5 and in line with the observations
we made in Fig. 4, we see that the ACC status 𝑎acc (Fig. 6(a)) and
the vehicle speed 𝑣avg (Fig. 6(b)) do not influence the TGD prediction
as much as they influence the long glance prediction. This applies in
particular to secondary task engagements with few interactions. The
impact of list interactions 𝑛List and homebar interactions 𝑛Homebar on
the TGD, however, is similar to the impact those interactions have on
the long glance probability (Figs. 6(e) and 6(f)). This also applies to
the influence of the average touch distance 𝑑avg. An increase in touch
distance leads to an increase in TGD and long glance probability until
a certain threshold is reached. However, the interaction effect with 𝑁
is higher for the TGD prediction model. Another interesting aspect that
might need further exploration is the location of the x-intercept. This
point describes the touch distance at which the feature’s impact turns
from decreasing to increasing the visual demand prediction (Fig. 6(d)).

5. Discussion

The presented approach enables users to evaluate the visual demand
of early-stage prototypes. In the following, we put our results into
perspective and show that the presented approach is more accurate
than comparable methods. The predictions and explanations facilitate
the generation of fast insights without requiring expensive and long-
planned user studies. We illustrate this by assessing three exemplary
research objectives covered in the literature. Finally, we address several
limitations that apply to our approach.
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Fig. 5. Feature dependence plots for the long glance classification model.
5.1. Predicting the visual demand of in-vehicle touchscreen interactions

Given the complexity of the modeling task, the presented results
show how machine learning methods can be used to generate valuable
insights into drivers’ multitasking behavior by leveraging large natu-
ralistic driving data. Compared to the approach of Kujala and Salvucci
10
(2015), who report critical differences between model predictions and
observations, our approach is not only more accurate but also considers
a more diverse set of UI elements.

Our approach can predict the TGD with a mean absolute error of
roughly 2.4 s over a diverse range of interactions and driving scenarios.
In comparison, Purucker et al. (2017) report a mean error of 4 s when
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Fig. 6. Feature dependence plots for the TGD model.
averaged over all evaluated tasks. Furthermore, Purucker et al. (2017)
use a simple car following task at a constant speed for evaluation.
Although these comparisons are useful to put the results into perspec-
tive, one needs to consider that the approaches highly differ in their
environments and scenarios as described by Janssen et al. (2020).
11
5.2. Fast and easily accessible insights based on real-world driving data

Our approach has two main advantages over conventional user
studies. First, the models allow making predictions for yet unseen
secondary task engagements. Conventional studies can only be used
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to evaluate situations that were explicitly tested. Second, if the user
interface undergoes disruptive changes (e.g., a completely new design
or concept), the results of a user study are no longer valid and a new
study needs to be conducted. Similarly, our computational models may
also lose their capability to generalize. However, the advantage of the
automated approach for data collection and modeling is that, as soon
as a new version is deployed to test vehicles, data is collected and new
models based on this new version can be fitted. To demonstrate that
our approach is a meaningful extension of traditional user research
methods, we compare our results with those from conventional user
studies.

The influence of vehicle speed on drivers’ visual attention allo-
cation. Risteska et al. (2021) found that an increase in speed reduces
rivers’ long off-path glances. They argue that drivers modulate their
isual attention allocation based on driving demands. A similar finding
s presented by Tivesten and Dozza (2014), who found a significant
orrelation between vehicle speed and off-road glance duration when
rivers were engaged in a visual manual phone task. This is consistent
ith our results shown in Figs. 4(a) and 5(b). Our explanations do not
nly indicate that the long glance probability decreases with increasing
peed but further suggest that this behavior might not be strictly
roportional and is also affected by the status of driver assistance
ystems. Our results further show that the predicted TGD increases
ith increasing speed (see Fig. 6(b)). The combination of both findings
rovides a more comprehensive picture suggesting that drivers reduce
heir single glance duration at higher speeds, forcing them to look to the
enter stack touchscreen more often. This, in turn, leads to increased
GDs because certain aspects of human glance behavior like the time
eeded to locate an item are constant for each glance (Large et al.,
017b).
The influence of driving automation on drivers’ visual atten-

ion allocation. Assisted driving is associated with an increase in
he mean and total glance duration during secondary task engage-
ents (Large et al., 2017a; Carsten et al., 2012; Ebel et al., 2022).
his is in line with our findings presented in Fig. 4. In a driving
imulator study, Carsten et al. (2012) also found that the effect of
ateral control (SA) on driver engagement is larger than the effect of
ongitudinal control (ACC). Based on our data, we cannot confirm this
inding. The reasons for this can be manifold but may well be due to the
ifference between real data and simulation data. Our results further
iffer from those of Morando et al. (2019), who report no differences
n the aggregate off-path glance duration distributions between manual
nd assisted driving. They only report an effect concerning the on-
oad glance distribution but state that their eye-tracker did not provide
etailed information about the off-path AOIs. Since we can explicitly
etect glances toward the center stack touchscreen and can distinguish
hem from general off-path glances, we argue that our results are
uperior.
The influence of design characteristics on drivers’ visual at-

ention allocation. There are not yet many approaches that have
nvestigated the influence of design characteristics on visual demand
n such detail (element type basis) as we show in our approach. Kujala
nd Salvucci (2015) found that the average distance between two
onsecutive touch interactions is a critical factor associated with long
lances exceeding the limit considered safe. This is in line with our
esults presented in Figs. 5(d) and 6(d). The explanations that our
ethod provides could additionally serve as a first attempt to quantify

he impact spatial separation of interaction elements has on visual
emand while driving. Our approach also allows us to make detailed
tatements about the influence of individual elements. So far, only the
ask interaction times have been studied in the literature in a roughly
imilar level of detail (Green et al., 2015; Schneegaß et al., 2011). We
12

ound that in particular interactions with maps, lists, and interactions
within Apple CarPlay and Android Auto seem to be visually demanding.
Interactions on the static homebar, with app icons, and general buttons,
on the other hand, are less demanding.

5.3. Benefits for the design process of IVISs and implications on distracted
driving prevention

To develop IVISs that are safe to use, driver distraction evaluation
needs to be an integral part already in the early design stages. However,
driver distraction is a complex construct, and automotive UX experts
need data-driven support to evaluate and compare design alternatives
concerning their distraction potential (Ebel et al., 2021b). Thus, our
approach aims to inform the design process of IVISs from the bottom
up to develop solutions that are the least distracting and safe by
design. We envision our method to be used to dynamically evaluate
early-stage IVIS designs. Users can assess hypothetical IVIS designs
concerning their distraction potential in terms of visual demand. They
can play around with artificial input samples to learn how changes
in the user flow or driving scenario affect drivers’ visual attention
allocation. Our method then explains how each parameter contributes
to the overall prediction. Thus, designers can better understand the
effects of various UI elements, driving automation, and vehicle speed
on driver distraction. This information can then be used to design IVISs
that are less distracting and reduce the risk of accidents. The improved
accuracy over comparable approaches and the three application exam-
ples show that our approach can make a major contribution to better
understanding the complex construct of driver distraction and drivers’
visual attention allocation during secondary touchscreen tasks.

5.4. Limitations and future work

As we leverage already commercialized technologies of our research
partner, we collected a large amount of behavioral data. We observed
drivers’ natural interaction behavior without explicitly telling them
which touchscreen interactions to perform and therefore eliminate the
so-called instruction effect (Carsten et al., 2017). While this approach
has many advantages, especially over simulator and test track stud-
ies, several limitations apply. These limitations and their potential
implications are discussed in the following.

Only company internal cars contributed to the data collection.
Whereas they are used for a diverse range of testing procedures, they
are also used for transfer and leisure rides of employees, for example
over the weekend. We argue that, even if drivers follow a test protocol
that aims to evaluate driving-related functions, the incentive to interact
with the IVISs does not deviate much from real-world behavior. Fur-
thermore, all drivers in this study need to be considered expert users.
However, it is not yet entirely clear to what extent the gaze behavior
of experts differs from regular users. Whereas Wikman et al. (1998)
report that experienced drivers allocated their visual attention more
adequately (Wikman et al., 1998), Naujoks et al. (2016) show that
experienced users of Advanced Driver Assistance Systems (ADASs) tend
to increase their secondary task engagements compared to novice users.
However, a comparison with related approaches (Gaspar and Carney,
2019; Morando et al., 2019; Noble et al., 2021) shows high agreement
in total and average glance behavior. Still, the restricted sample of
drivers and the fact they were driving alone, need to be considered
when interpreting the results.

It is important to consider that the features used in this work do not
capture all factors that influence drivers’ visual attention allocation. In
this study, we only consider the level of driving automation, vehicle
speed, and the steering wheel angle to describe the driving situation.
These features and their interactions provide valuable information
(compare Figs. 5(a), 5(b), 6(b), 6(a), and Fig. A.7 in the Appendix),
but they do not allow for a comprehensive description of the driving
situation. For example, the effect of vehicle speed may vary not only

based on the level of driving automation, but also on the type of road
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and traffic situation. Therefore, including additional features may not
only improve the description of the driving situation but also make
the existing features more meaningful by considering their interaction
effects.

Furthermore, it is important to put the results into context and to
elaborate on the practical implications this might have. As demon-
strated, the approach provides valuable insights into how design ar-
tifacts and environmental factors affect drivers’ visual attention alloca-
tion. The predictions and explanations can guide designers to create
interfaces that are less distracting and safer to use. However, even
though our approach is superior to related approaches, it is not yet
accurate enough to make pixel-precise predictions or to differentiate
between minor changes in the driving environment (e.g., driving at
72 km/h vs. 75 km/h). To reliably evaluate the effect of such slight
changes or to even act as a basis for driver distraction guidelines,
the accuracy needs to be increased. Furthermore, we do not consider
environmental factors like lightning conditions or street type (e.g., rural
road or highway) or UI artifacts like element color and size that might
also influence visual attention allocation. Including such features would
provide a more holistic picture and probably more accurate predictions.
Moreover, drivers tend to self-regulate their willingness to engage in
secondary tasks based on the driving task demands (Ebel et al., 2022;
Oviedo-Trespalacios et al., 2018; Hancox et al., 2013). As a result, some
interactions occur less frequently in certain driving situations, leading
to fewer training data. Therefore, it is likely that prediction accuracy
varies across driving situations.

The presented explanations do not imply causality, and therefore
do not represent a complete assessment of drivers’ visual attention
allocation while being engaged in a secondary touchscreen task. How-
ever, the explanations help designers to identify the most informative
relationships between input features and model outputs, which assist
them in understanding the visual demand predicted by the machine
learning model.

Having shown that this method delivers promising results, the main
goal of future iterations is to improve prediction accuracy. First, a more
holistic description of the driving situation by providing additional
features like lighting conditions, the proximity of surrounding road
users, or map data might lead to significant improvements. Second,
considering user demographics like age or driving experience might
also lead to better accuracy. Finally, a larger dataset is not only likely
to benefit the algorithms presented in this work, but would also enable
more sophisticated approaches like recurrent neural networks that can
capture sequential information embedded in the interaction sequences.

6. Conclusion

In this paper, we propose a machine learning approach that pre-
dicts the visual demand of secondary touchscreen interactions while
driving, according to the type of interactions that are performed and
the associated driving parameters. Our approach generates local and
global explanations providing insights how design artifacts and driving
parameters affect drivers’ visual attention allocation. We evaluate the
approach on a real-world driving dataset consisting of 12,142 sec-
ondary task engagements. Our best model identifies secondary task
engagements during which drivers perform a long glance with 68%
accuracy and predicts the TGD with a mean deviation of 2.4 s. The
analysis of the generated explanations reveals clear differences between
the visual demand of specific touchscreen interactions and shows that
drivers’ visual attention allocation depends on the driving situation. In
line with related research (Risteska et al., 2021; Tivesten and Dozza,
2014), we show that drivers modulate their visual attention allocation
13

based on the vehicle speed and the level of driving automation. (
Our key contributions address many points that previous approaches
(Risteska et al., 2021; Large et al., 2017b; Janssen et al., 2015; Victor
et al., 2014) have identified as desirable: (1) The approach leverages
continuously collected large-scale real-world data providing realistic
predictions of drivers’ visual attention allocation during secondary task
engagements. (2) The approach can easily be adjusted to incorporate
additional features and to predict various metrics in addition to TGD
and long glance probability (e.g., number of glances, total eyes off-road
time, mean glance duration). (3) The local and global explanations
provide detailed insight into the impact design artifacts and scenario
parameters have on driver distraction prediction. (4) The approach can
inform designers about potential implications their design may have
and can guide them to design in-vehicle touchscreen interfaces that are
safe to use.
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Appendix A

A.1. Definitions

Definition 1. An interaction sequence 𝐼 = (𝑖𝑛)𝑁𝑛=1 is a sequence of
touchscreen interactions recorded during one trip, where 𝑖𝑛 is a single
touchscreen interaction performed by a user and 𝑁 denotes the number
of interactions of 𝐼 . A touchscreen interaction 𝑖 = (𝑡, 𝑒, 𝑝, 𝑐) is composed
of its timestamp 𝑡, element type 𝑒, gesture type 𝑝 and coordinate pair
= (𝑥, 𝑦). Within 𝐼 , the duration between two successive interactions

𝑡(𝑖𝑛+1) − 𝑡(𝑖𝑛) must be smaller than 𝛥𝑡𝑚𝑎𝑥 such that 𝑡(𝑖𝑛+1) − 𝑡(𝑖𝑛) ≤ 𝛥𝑡𝑚𝑎𝑥.

Definition 2. A glance sequence 𝐺 = (𝑔𝑛)𝑁𝑛=1 is a sequence of non-
overlapping intervals of driver glances, where 𝑔𝑛 is a single glance
performed by a user and 𝑁 denotes the number of glances of 𝐺. Each
glance 𝑔𝑛 = (𝑡𝑠, 𝑡𝑒, 𝑟)𝑛 is composed of its start time 𝑡𝑠, end time 𝑡𝑒, and

OI 𝑟, describing where looked at between 𝑡𝑠 and 𝑡𝑒. For all glances of
but the first of a trip, the start time is equal to the end time of the

receding glance 𝑡𝑠(𝑔𝑛) = 𝑡𝑠(𝑔𝑛−1).

efinition 3. A driving sequence 𝐷 = (𝑑𝑛)𝑁𝑛=1 is a sequence of driving
ata observations, where 𝑑𝑛 is a single observation and 𝑁 denotes the
umber of observations of 𝐷. Each observation is defined as 𝑑𝑛 =

𝑡, 𝑣, 𝜃, 𝑎𝐴𝐶𝐶 , 𝑎𝑆𝐴)𝑛, where 𝑡 represents the timestamp, 𝑣 the vehicle
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speed, 𝜃 the steering wheel angle, 𝑎𝐴𝐶𝐶 and 𝑎𝑆𝐴 the status of the ACC
and SA respectively.

Definition 4. A secondary task engagement 𝑆 is defined as an interaction
sequence and its corresponding glance sequence and driving sequence
𝑆 = (𝐼, 𝐺,𝐷). We consider all driving observations starting before the
first interaction until after the last interaction such that 𝑡(𝑖1) − 𝑡𝑏 <
𝑡(𝑑𝑛) < 𝑡(𝑖𝑁 ) + 𝑡𝑏. Where 𝑡𝑏 represents a buffer duration. Regarding
the glance sequence 𝐺, we consider all glances whose start time or
end time falls in between the first and last interaction of 𝐼 such that
𝑡(𝑖1) < 𝑡𝑠(𝑔𝑛) < 𝑡(𝑖𝑁 ) ∨ 𝑡(𝑖1) < 𝑡𝑒(𝑔𝑛) < 𝑡(𝑖𝑁 ).

Problem 1. We define the long glance prediction task as the problem of
identifying all secondary task engagements 𝑆 in which a long glance
occurs such that for any 𝑔𝑛 ∈ 𝐺, 𝛥𝑡𝑔 = 𝑡𝑒(𝑔𝑛) − 𝑡𝑠(𝑔𝑛) > 2 s given the
according interaction sequence 𝑠𝑖 and driving sequence 𝑠𝑑

Problem 2. We define the total glance duration prediction task as the
problem of predicting the TGD toward the center stack touchscreen
during a secondary task engagement 𝑆.

A.2. Hyperparameter optimization

In the following we report the results of the hyperparameter opti-
mization for each of the individual models.

A.2.1. Random forest models
The Implementation and the descriptions are based on the scikit-

learn python package. For the sets of best performing parameters please
refer to Table 3.

n_estimators = [100, 200, 400, 800, 1200, 1600, 2000] — The
number of trees in the forest.

max_features = [‘auto’, ‘sqrt’] — Number of features to consider
when looking for the best split

max_depth = [10, 20, 30, 40, 60, 80, 100] — Maximum depth of
the tree.

min_samples_split = [2, 5, 10] — Minimum number of samples
required to split an internal node.

min_samples_leaf = [1, 2, 4] — Minimum number of samples
required to be at a leaf node.

bootstrap = [True, False] — Whether bootstrap samples are used
when building trees.

Table 3
Sets of best performing parameters for the Random Forest models.

Feature Long Glance Prediction TGD Prediction

n_estimators 200 1600
max_features auto auto
max_depth 10 60
min_samples_split 5 2
min_samples_leaf 2 4
bootstrap True True

A.2.2. XGBoost models
The Implementation and the descriptions are based on the XGBoost

python package. For the sets of best performing parameters please refer
to Table 4.

n_estimators = [20, 100, 500, 1000, 5000, 10000, 20000] —
Number of boosting rounds.

subsample = [0.2, 0.4, 0.6, 0.8, 1] — Subsample ratio of the
training instance.

max_depth = [5, 10, 50, 100] — Maximum tree depth for base
14

learners.
learning_rate = [0.0005, 0.001, 0.01, 0.1, 1] — Boosting learning
rate (xgb’s ‘‘eta’’)

colsample_bytree = [0.2, 0.4, 0.6, 0.8, 1] — Subsample ratio of
columns when constructing each tree.

colsample_bylevel = [0.2, 0.4, 0.6, 0.8, 1] — Subsample ratio of
columns for each level.

Table 4
Sets of best performing parameters for the XGBoost models.

Feature Long Glance Prediction TGD Prediction

n_estimators 5000 5000
subsample 0.6 0.8
max_depth 10 10
min_child_weight 4 10
learning_rate 0.01 0.0005
colsample_bytree 0.2 0.6
colsample_bylevel 0.2 1

A.2.3. Feedforward neural networks
The Implementation and the hyperparameter optimization was per-

formed using the Keras API. It needs to be noted that the different
hyperparameter combinations did not show large differences in their
predictive performance. For the sets of best performing parameters
please refer to Table 5.

n_hidden_layers = [1, 2, 3, 4, 5] — Number of layers between the
input and output layer of the neural network

n_neurons = [32, 64, 128, 256, 512]) — Number of neurons per
ayer.
activation = [‘‘relu’’, ‘‘sigmoid’’] — The activation function of the

eurons in the respective layer.
drop_out = [0, 0.1, 0.2, 0.3] — The probability at which random

nits are set to zero during training.
learning_rate = [0.01, 0.001, 0.0001] — Initial learning rate of the

DAM optimizer.

Table 5
Sets of best performing parameters for the FNN models.

Feature Long Glance Prediction TGD Prediction

n_hidden_layers 3 1
learning_rate 0.0001 0.001
n_neurons layer 1 512 512
activation layer 1 sigmoid relu
drop_out layer 1 0.3 0.1
n_neurons layer 2 64 –
activation layer 2 relu –
drop_out layer 2 0.1 –
n_neurons layer 3 256 –
activation layer 3 sigmoid –
drop_out layer 3 0.1 –

A.3. Dataset summary statistics

Table 6 provides an overview of all features.

A.4. Steering wheel feature dependence plot

See Fig. A.7.

https://scikit-learn.org/stable/index.html
https://scikit-learn.org/stable/index.html
https://scikit-learn.org/stable/index.html
https://xgboost.readthedocs.io/en/stable/python/python_api.html
https://keras.io
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Table 6
Dataset summary statistics.

Statistic Mean St. Dev. Min 𝑄1(25) Median 𝑄3(75) Max

Number of interactions 4.431 4.993 1 1 3 5 41
Number of tap gestures 3.814 4.495 0 1 2 5 40
Number of drag gestures 0.363 1.324 0 0 0 0 31
Number of multitouch gestures 0.240 1.108 0 0 0 0 26
Average glance duration in ms 1,441.491 929.736 120.000 960.000 1,241.000 1,659.000 26,801.000
Number of glances 4.367 4.998 1 1 3 6 50
number of long glances 0.569 1.102 0 0 0 1 13
Total glance duration in ms 5,742.751 7,049.487 120.000 1,590.500 3,499.000 7,354.000 262,416.000
average speed in km/h 70.516 36.935 0.633 40.881 66.230 96.567 209.883
ACC active 0.206 0.404 0 0 0 0 1
SA active 0.099 0.299 0 0 0 0 1
AppIcon interactions 0.196 0.586 0 0 0 0 13
CoverFlow interactions 0.038 0.434 0 0 0 0 16
Unknown interactions 0.049 0.450 0 0 0 0 23
Other interactions 0.731 1.568 0 0 0 1 37
List interactions 0.518 1.652 0 0 0 0 31
Tab interactions 0.385 1.335 0 0 0 0 35
ControlBar interactions 0.012 0.135 0 0 0 0 4
Button interactions 0.640 1.515 0 0 0 1 36
Homebar interactions 0.892 2.032 0 0 0 1 36
Slider interactions 0.015 0.228 0 0 0 0 9
ClickGuard interactions 0.058 0.313 0 0 0 0 8
PopUp interactions 0.030 0.232 0 0 0 0 9
Keyboard interactions 0.184 1.435 0 0 0 0 31
Map interactions 0.508 2.181 0 0 0 0 39
RemoteUI interactions 0.173 1.179 0 0 0 0 31
Browser interactions 0.002 0.093 0 0 0 0 8
Fig. A.7. Feature dependence plots of the steering wheel angle and its interaction with the vehicle speed for the long glance classification and TGD model.
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