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Stage 1: Increasing Task Complexity 
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Figure 1: Overview of training routines to improve RL-based biomechanical forward simulations.

Abstract
Biomechanical forward simulation holds great potential for HCI,
enabling the generation of human-like movements in interactive
tasks. However, training biomechanical models with reinforcement
learning is challenging, particularly for precise and dexterous move-
ments like those required for touchscreen interactions on mobile
devices. Current approaches are limited in their interaction fidelity,
require restricting the underlying biomechanical model to reduce
complexity, and do not generalize well. In this work, we propose
practical improvements to training routines that reduce training
time, increase interaction fidelity beyond existing methods, and
enable the use of more complex biomechanical models. Using a
touchscreen pointing task, we demonstrate that curriculum learn-
ing, action masking, more complex network configurations, and
simple adjustments to the simulation environment can significantly
improve the agent’s ability to learn accurate touch behavior. Our
work provides HCI researchers with practical tips and training rou-
tines for developing better biomechanical models of human-like
interaction fidelity.
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• Human-centered computing → User models; Pointing; Sys-
tems and tools for interaction design; • Computing method-
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1 Introduction
Simulated users that model human-like, dexterous interactions with
technology hold great potential to make user-centered design more
efficient, rigorous, and predictable [13, 16]. At the core of these
systems are biomechanical models that capture anatomical and
physiological detail. Advances in computational power have made
it possible to use increasingly complex models, such as those in
MyoSuite [2, 25] and User-in-the-Box [11, 12], which can simulate
muscle fatigue or neuromuscular diseases.

However, training Reinforcement Learning (RL) agents to learn
muscle-level control in physically simulated environments remains
a highly complex task. Training is often brittle, slow, and diffi-
cult to reproduce. This limits interaction fidelity and accordingly
the broader adoption of biomechanical modeling in the Human-
Computer Interaction (HCI) community for technology design and
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Table 1: Evaluation results represent the mean values of 100 episodes, each with a maximum duration of 10 seconds.

Network
Size

Max
Timesteps

Action
Masking

Curriculum
Learning

Stage 2
Dynamic Reward

Stage 2
Early Reward

Button
Radius (mm)

Success
Rate

Avg. Errors /
Success Episode

Avg. Time /
Success Episode (s)

128 × 128 200M ✓ ✓ ✗ ✓ 1.5 82% 176.08 3.39
256 × 256 200M ✓ ✓ ✓ ✗ 1.5 99% 156.81 3.35
256 × 256 800M ✗ ✓ ✓ ✗ 1.5 5% 3.6 1.6
512 × 512 200M ✓ ✓ ✓ ✗ 1.5 100% 8.07 1.40
512 × 512 200M ✓ ✗ ✗ ✗ 6 0% 0 ✗

512 × 512 200M ✓ ✗ ✗ ✓ 1.5 64% 179.56 3.62

evaluation. For instance, in User-in-the-Box [6, 11], the pointing
targets had a radius of 5–15 cm. Given that the iPhone 16 has a diag-
onal of 15.5 cm this is large, especially when such models should be
applied to mobile use cases. Furthermore, the action space for arm
movements was simplified by disabling wrist flexion and various
muscles, effectively reducing the model to five degrees of freedom
and 26 active muscles. In Sim2VR, Fischer et al. [7] also reduced the
number of muscles and replaced some with joint torque actuators,
which are easier to control. Their model also focuses primarily on
coarse movements in VR. Overall, current approaches demonstrate
the potential of musculoskeletal forward simulation for HCI, but
they fall short of enabling the precise control required for most
interactive tasks. We argue that these shortcomings are primarily
due to ineffective training routines. Although reward shaping has
been studied [3, 19, 21], the influence of other training routines on
the learning of fine motor skills remains underexplored.

In this work, we present and evaluate performance improve-
ments achieved through action masking, curriculum learning, al-
ternative policy network configurations, and task-specific improve-
ments to the simulation environment. Based on our findings, we
propose actionable training routines that lower technical barriers
and support the development of high-fidelity, human-like control
in physics-based biomechanical simulations for HCI.

2 Training Routines for Biomechanical Models
Our primary goal is to learn stable muscle-level control policies
that enable precise and dexterous movements. All evaluations are
conducted using Proximal Policy Optimization (PPO) [20], and
their performance is assessed based on the success rate of touch
interactions. We consider an interaction as successful if the target
element is touched within 10 seconds after the start of the episode.
We further count unintended interactions outside the target area
(e.g., due to overshooting) as errors, indicating suboptimal control
and a lack of fine motor skills. In the following, we introduce all
the routines evaluated in this work.

Action Masking. As shown in prior work [7, 10, 11, 15, 22], ac-
tion masking is an effective technique to reduce the dimensionality
of the action space, limit unnecessary exploration, and accelerate
learning. In our implementation, we apply action masking by dis-
abling all fingers except the index finger. Our results (see Table 1)
show that action masking highly improves training efficiency.

Multi-Stage Curriculum Learning. In RL, curriculum learn-
ing improves learning efficiency and final performance by training
agents on tasks of gradually increasing difficulty [14, 17, 18]. To
achieve the finemotor control required for touchscreen interactions,

we introduce a structured, multi-stage curriculum. Each curriculum
stage increases complexity via sub-stages. The agent advances to
the next (harder) stage only once it meets a performance threshold
in the final sub-stage of the current curriculum stage. As shown in
Table 1 and illustrated in Figure 1, the following curriculum stages
significantly improve training efficiency:

Stage 1: Increasing Task Complexity. To simplify early training, the
agent begins from a fixed position and must reach a large, button-
shaped 3D target placed just above the surface with its fingertip.
As training progresses, the 3D target gradually flattens into a 2D
surface (see Figure 1), shifting the task from interacting with a
volumetric object to a more demanding surface-based interaction
that requires greater precision.

Stage 2: Dynamic Reward-Shaping. Reward shaping involves mod-
ifying the reward function to guide the agent toward desired be-
haviors more effectively [4, 5, 8, 9, 24]. Our experiments show that
starting with a simple reward to then gradually increase reward
complexity, based on the training progress, significantly improves
performance. Early rewards penalize incorrect button presses, while
later stages discourage jerky movements and excessive muscle ef-
fort. Without this step-wise shaping, the agent fails to learn mean-
ingful behavior.

Stage 3: Adaptive Target Sampling. Once the agent achieves satis-
factory performance in the early stages of the curriculum, adaptive
target sampling is used to improve generalization. The interaction
surface is first discretized, and target sizes are randomized by uni-
formly sampling radii between 1.5mm and 7mm—encouraging the
agent to learn the speed-accuracy trade-off observed in human
interaction [26]. We also found that success rates vary significantly
across target locations. To address this, we sample low-performing
target locations more frequently, promoting balanced performance
across the task environment.

Stage 4: Continuous Movement Sequences. Human interaction
with mobile devices such as smartphones can be seen as a sequence
of movement primitives. Thus the agent must learn to perform any
interaction movement from any starting position. To achieve this,
each new target is sampled relative to the agent’s current position
and velocity.

Network Configurations. Most current approaches [7, 11] are
limited by the use of small policy networks, which struggle to
capture the complexity of fine-motor tasks. While smaller networks
are easier to train, they lack the capacity for precise control. In
contrast, our training routines, combined with tuned optimizer
settings, enable the use of significantly larger networks, leading
to improved performance. We set the learning rate and clip range
to 6 × 10−4 and 0.2, respectively, and reduce both linearly over
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time. At timestep 𝑡 , each parameter 𝑝 is computed as: 𝑝 (𝑡) = 𝑝𝑡=0 ×
𝑟 (𝑡), where 𝑟 (𝑡) linearly decays from 1 to 0 as training progresses.
This schedule encourages exploration early on and gradually shifts
toward more stable convergence.

Our results (Table 1) further show that a larger policy network
with a 512 × 512 architecture significantly outperforms smaller
networks, enabling more accurate and stable fine-motor control.

Simulation Tuning. We propose multiple small tweaks to the
simulation environment, such as (1) reducing the frameskip param-
eter, which controls how frequently the agent receives observations
and issues actions in MuJoCo [1, 23]. We found that a low value (e.g.,
3) allows fine-grained control, while higher values (e.g., 10) cause
overshooting due to prolonged muscle activations. (2) We introduce
early stopping criteria that terminate episodes whenever the agent
exceeds the episode length restriction or leaves the permitted 3D
action space constraint, thereby enforcing realistic temporal and
spatial boundaries. (3) We initialize joint positions within the valid
3D action space, setting the index finger to point forward, to ensure
consistent, task-relevant initial conditions.

3 Conclusion
This work demonstrates that tailored training routines and hy-
perparameter settings are key to achieving accurate and dexter-
ous control in RL-based musculoskeletal simulations. By evalu-
ating task success and errors, we show that reliable fine-motor
behavior is achievable, overcoming limitations of prior approaches.
Our methods improve performance while lowering technical bar-
riers, making biomechanical simulations more accessible for HCI
research and applications. Implementations of our routines are
available at: https://github.com/ciao-group/RL-training-routines-
for-Biomechanical-Models.
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