
Destination Prediction Based on Partial Trajectory Data

Patrick Ebel1, Ibrahim Emre Göl1, Christoph Lingenfelder2 and Andreas Vogelsang1

Abstract— Two-thirds of the people who buy a new car
prefer to use a substitute instead of the built-in navigation
system. However, for many applications, knowledge about a
user’s intended destination and route is crucial. For example,
suggestions for available parking spots close to the destination
can be made or ride-sharing opportunities along the route are
facilitated. Our approach predicts probable destinations and
routes of a vehicle, based on the most recent partial trajectory
and additional contextual data. The approach follows a three-
step procedure: First, a k-d tree-based space discretization
is performed, mapping GPS locations to discrete regions.
Secondly, a recurrent neural network is trained to predict
the destination based on partial sequences of trajectories. The
neural network produces destination scores, signifying the prob-
ability of each region being the destination. Finally, the routes
to the most probable destinations are calculated. To evaluate
the method, we compare multiple neural architectures and
present the experimental results of the destination prediction.
The experiments are based on two public datasets of non-
personalized, timestamped GPS locations of taxi trips. The best
performing models were able to predict the destination of a
vehicle with a mean error of 1.3km and 1.43km respectively.

I. INTRODUCTION

Knowledge about a user’s intended route and destination
provides many opportunities to improve the driving experi-
ence. A smart travel assistance system that knows in advance
where the user is likely to go may offer the following
functionalities:
• Make smart suggestions for gas or charging stations.
• Advise the user to change the planned route in order to

avoid a congested road or area.
• Suggest Points of Interest (POI).
• Show possible parking spots close to the destination.
If the driver is using the built-in navigation system, the

planned route and destination are known. In such a case
the previously named tasks can be solved in a straightfor-
ward manner. However, referring to a study [1] taken by
J.D. Power with more than 13,000 consumers, two-thirds of
the people who buy a new car prefer to use a substitute
instead of the built-in navigation system. In those cases, the
planned route and destination are unavailable for the in-car
systems, which makes the route and destination prediction
necessary to enable the above-listed features.

In this paper, we propose a Long Short-Term Memory
(LSTM)-based model using a k-d tree-based space partition-
ing method to predict the future destination and route of a

1 Technische Universität Berlin, Germany [patrick.ebel,
andreas.vogelsang]@tu-berlin.de,
ibrahim.e.goel@campus.tu-berlin.de

2 Mercedes-Benz Innovation Lab, MBition GmbH, Berlin, Germany
christoph.lingenfelder@daimler.com

20% 19%

22%

75% 53% 34%

Fig. 1: Use Case: Route and Destination Prediction.

car. To perform a prediction, the model requires a partial
trajectory in the form of a sequence of Global Positioning
System (GPS) coordinates with associated timestamps. The
prediction follows a three-step procedure: In the first step, a
k-d tree-based space discretization is performed, transform-
ing the analyzed area into a set of discrete regions. Thus, each
trip is not represented as a sequence of GPS locations but
as a sequence of regions. This sequence is then, along with
additionally retrieved metadata, fed to the LSTM. The neural
network outputs destination scores, signifying the probability
for each region being the destination of the partial trajectory.
Subsequently, the highest-scoring, i.e. most probable, routes
for the near future can be estimated (see Fig. 1). Our
approach does not require any personalized data and is,
therefore, able to make a forecast based on data collected
from a crowd of anonymous users with no knowledge about
personal patterns or regularities. The model is evaluated
on two datasets containing trajectory information of taxis
in two different cities, namely Porto and San Francisco.
Additionally, the model is evaluated on the test set provided
in the ECML/PKDD 2015 Kaggle Challenge [2] obtaining a
score that would have ranked first out of 381 submissions.

II. RELATED WORK

The recent approaches in the field of destination prediction
can be divided into personalized destination prediction and
generic destination prediction. The former approaches [3],
[4], [5], [6] try to model the mobility patterns of a specific
user. Due to the high degree of regularity in personal mobility
patterns, they mostly accomplish a very high prediction
accuracy. However, the necessary datasets are very limited
in their volume and availability. Additionally, recording and
saving trajectories directly connected to a person is highly
critical due to privacy concerns. It also limits usefulness,
because it will fail exactly when a user needs advice most,
namely when doing something new.

c©2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.

This work focuses on generic destination prediction where
the data is collected from a crowd of anonymous drivers
without any knowledge of personal patterns or regularities.
The majority of these approaches divide the space into
discrete subsets in the first step. This is necessary because the
available datasets are too sparse to cover a sufficient amount
of query routes [7]. There are mainly two different strategies
applied, road network mapping and spatial partitioning.

In road network mapping, space gets discretized based on
an underlying road network. The GPS locations are mapped
to road segments with a unique identifier. The main drawback
of these approaches [4], [8], [9], [10] is the high amount of
road links, which increases the data sparsity problem.

Spatial partitioning is the process of dividing space into
multiple, non-overlapping regions. The spatial partitioning
itself can be divided into two approaches, space-based par-
titioning and trajectory-based partitioning. The approaches
using space-based partitioning [3], [5], [11], [12] map the
locations to an overlaying uniform grid, dividing the space
into a set of congruent cells. This has its advantages in its
simplicity, fast implementation, and intuitive understanding.
The essential downside is that the spatial distribution of
trajectories is not considered. Hence, the distribution of data
points across the cells or regions might be very imbalanced
which can lead to a loss in prediction accuracy [13]. To solve
this problem, Xue et. al [13] propose a quantile-based as
well as a k-d tree-based partitioning strategy, that divide the
space based on the density of data points. Due to the more
uniform distribution of data points across the grid cells, both
result in higher prediction accuracy. Wang et al. introduce
a method [7] where space is first divided into uniform grid
cells in order to synthesize the nearest cells in the second
step. Thus, discrete regions of variable shape are generated.

Besides the different spatial partitioning methods, multiple
machine learning approaches are applied in recent work.
Most use probabilistic models and especially Markov Models
(MMs), where each state represents a location [8], [9], [10],
[13]. Thus, each trajectory is modeled as a series of state
transitions. Knowing the transitions and their probabilities,
the probability of reaching a certain location is calculated.
To avoid the data sparsity problem most MMs are based on
low-order Markov processes and, therefore, only incorporate
the latest time-steps which limits their capability to model
long-term dependencies.

In contrast to probabilistic models, recent efforts have
been made using Artificial Neural Networks (ANNs) for
destination prediction. Endo et al. [11] propose an LSTM,
computing transition probabilities between the grid cells for
the next time step is applied. To estimate destination proba-
bilities for destinations further in the future, the authors apply
the Monte Carlo principle. The main advantages of LSTM-
based models lie in their capability to model long-term
dependencies and to overcome the data sparsity problem. Liu
et al. [14] propose an approach called Spatial Temporal Re-
current Neural Network (ST-RNN), incorporating distance-
specific transition matrices to model geographical dependen-
cies. Brébisson et al. [15] propose a Multi-Layer Perceptron

(MLP)-based solution that won the Kaggle challenge on taxi
destination prediction [2]. A LSTM-based method which
predicts the destination solely based on the individual pick-
up and drop-off points of the taxi drivers is presented by
Rossi et al. [16].

Another solution to the problem are matching-based algo-
rithms. The main idea is to match a query trajectory with
recorded trajectories. The predicted destination or route is
then equal to the destination or route of the recorded trajec-
tory having the highest similarity to the query trajectory. In
the work of Lam et al. [17] and the early work of Froehlich
and Krumm [18], trip matching approaches are applied. A
hybrid model that combines MMs with Prediction by Partial
Matchings (PPMs) is proposed by Dantas Nobre Neto et
al. [4], [19]. However, the main drawback of all matching-
based methods is that only routes and destinations which
exist in the historical data can be predicted.

III. PROPOSED APPROACH

This work combines a trajectory-based space partitioning
with an LSTM-based multi-input model destination predic-
tion model.

A. Definitions and Problem Statement

Definition 1: Let T be the set of trajectories t. A trajectory
t is defined as a sequence (pn)Nn=1, where pn ∈ R2 is a single
observation and N denotes the length of the trajectory. Each
observation pn = (φ, λ)n is composed of its latitudinal φ and
longitudinal λ GPS coordinates. A trajectory’s destination is
defined as yGPS = pN .

Definition 2: A partial trajectory tp = (pn)
Np

n=1, is defined
as a sub-trajectory of t, where Np is a random variable
following the discrete uniform distribution over N∩[2, N−1].

Definition 3: The haversine distance Dh(pA, pB) measures
the distance between two locations pA, pB ∈ R2 on a sphere
and is computed as follows:

Dh(pA, pB) = 2 · r · arctan
(√

a

1− a

)
,with (1)

a = sin2
(
φB − φA

2

)
+cos (φA) cos (φB) sin

2

(
λB − λA

2

)
,

where r is the earth’s radius.
Problem: We define the destination prediction task as the

problem of predicting yGPS given a partial trajectory tp.

B. Space Discretization

To overcome the data sparsity problem, a k-d tree-based
partitioning approach is applied. A k-d tree is a binary tree in
which each node represents a coordinate space in dimension
k. Each non-leaf node divides the data space of its parent
node into two subspaces of equal size. Thus, a k-d tree can be
used to recursively divide the data space into partitions until a
defined number of data points per leaf nppr is reached. In our
case, with k = 2, each coordinate represents a location and
each partition represents a region. The number of resulting

(a) Denstity map of data points (b) Discrete regions

Fig. 2: Spatial partitioning of the Porto area.

regions nr and their size too, are dependent on nppr. For both
datasets nppr was heuristically defined such that the regions
are small enough in order to achieve a satisfactory accuracy
but big enough to avoid data sparsity.

After the discretization each latitude/longitude pair is
converted to an integer value ir = 1, . . . , nr, signifying the
region which the point is located in. The final partitioning
of the Porto dataset is shown in Fig. 2. We can observe that
the regions are smaller in areas with a high density of data
points, e.g. the city center or the airport area and larger in
more remote areas where less data was collected.

C. Modeling

Due to their ability to keep a memory of previous inputs,
LSTMs are considered to be efficient for time-series predic-
tion. Their main advantage to model long-term dependencies
is especially important for the destination prediction task at
hand. In contrast to matching-based algorithms, LSTMs are
able to overcome the data sparsity problem, due to their
ability to generalize.

In addition to the trajectory information, our approach also
processes contextual information, namely the time of the day,
the day of the week, the temperature and the precipitation1,
which are assumed to be constant for each trip. To process
the constant contextual information as well as time-series
data, namely the trajectory data, the model needs to process
the two inputs separately. The architecture of the multi-input
model is shown in Fig. 3.

The mapped trajectory data is fed to an Embedding layer
which turns integer values into dense vectors of a fixed
size. Thus, each index and therefore each region identifier
ir is mapped to a vector of size sembedTrip. These vectors
are initialized randomly but since the so-called embedding
table is part of the model parameters they are tuned during
training. The embedding table holds all vectors describing
the regions and thus is of size sembedTrip × nr. The idea of
using embeddings to represent integer values was inspired

1We retrieved the weather-related data for San Francisco from www.
frontierweather.com and for Porto from www.meteoblue.com

Metadata

[…, day, time, precipitation, …]

Mapped Trajectory Data

[…, 1240, 1196, 1150, 1145 …]

Embedding

Merge

Softmax

Inner Product

Destination Scores

…

0.1

0.05

0.44

0.13

…

Weighted Destination Coordinates

(47.19, 8.74)

ŷ

ŷ 𝑐𝑖 0≤𝑖≤𝑛𝑟𝑒𝑔𝑖𝑜𝑛𝑠

Centroids

Embedding Embedding

ŷGPS

Fully Connected

Fully Connected

LSTM

LSTM

Fully Connected

Fully Connected

Fig. 3: Architecture of the LSTM-based multi-input model.

by Natural Language Processing (NLP) [22]. The intention
to embed the regions is to learn their spatial information
and their relationship with each other. The output of the
embedding layer is a matrix describing the query trajectory
as a sequence of embedding vectors. This matrix is then
processed by a stack of nLSTM many-to-one LSTM-layers.

Similar to the trajectory, each attribute of contextual infor-
mation is mapped to an embedding vector of size sembedMeta.
Afterward, the metadata embeddings are fed into a stack of
ndenseMeta fully connected layers. The output of this MLP
stack is concatenated with the output of the LSTM stack,
and in turn, fed to a stack of ndense fully connected layers.
The next layer is a softmax layer which normalizes its output
inputs such that all outputs add up to 1. Each entry ŷi of the
output vector ŷ represents the destination score for region
i. Thus, ŷ can be interpreted as the probability distribution
over all regions.

Additionally, the inner product of ŷ and (ci)
nr
i=1, where

ci = (φci , λ
c
i) represents the centroid coordinates of region i,

is computed as follows:

ŷGPS =

(
φ
λ

)
pred

=

(∑nr
i=0 ŷi φ

c
i∑nr

i=0 ŷi λ
c
i

)
,

and represents a weighted destination prediction.

D. Test Design

Having two outputs ŷGPS and ŷ, the model can be op-
timized to serve different purposes. Optimizing the model
solely regarding ŷGPS leads to a superior top-1 destination
prediction as it is required in the mentioned Kaggle competi-
tion. However, for many intelligent travel assistance systems,

www.frontierweather.com
www.frontierweather.com
www.meteoblue.com

a probability distribution over multiple destinations is re-
quired. In this case, an optimization regarding ŷ is needed. To
measure the performance and optimize the model regarding
the two purposes, two error measures are specified. As in
most similar works [15], [17], [16], [20] the Mean Haversine
Distance serves as the basis for both error measures. Inspired
by Besse et al. [20], the first error measure E1

pred(θ) is defined
as the mean of the haversine distance between the location of
the true destination yGPS of the trajectory t and the location
of the weighted prediction ŷGPS(tp, θ), where θ is the set of
model parameters, adjusted during training. Thus, E1

pred(θ)
reads as follows:

E1
pred(θ) =

1

|T |
∑
tp∈T

Dh (ŷGPS (tp, θ) , yGPS) . (2)

However, the optimization of ŷGPS using Eq.2 does not
imply an optimization of ŷ. For illustrating the potential flaw,
we assume that yGPS is equal to the location of region A’s
centroid cA and that cA is the midpoint between cB and
cC being the centroids of region B and C. During training,
the penalty for assigning a score of 0.5 to regions B and C
would be zero since ŷGPS would be exactly at cA. This also
holds for assigning a score of 1 to region A (which would be
the wanted solution). Hence, the network has no reason to
shift weight to region A. Thus, for justifying the weights as
probability scores and being able to optimize the model with
regards to ŷ, a second error measure E2

pred(θ) is introduced.
In E2

pred(θ) the distance from each regions’ centroid ci to the
true destination yGPS is calculated and weighted based on ŷi:

E2
pred(θ) =

1

|T |
∑
tp∈T

nr∑
i=0

ŷi (tp, θ)Dh (ci, yGPS) . (3)

In the following, the models are evaluated against E1
pred

as well as against E2
pred and optimized using a weighted

combination Epred(θ):

Epred(θ) = αE1
pred(θ) + (1− α)E2

pred(θ) , (4)

with 0 ≤ α ≤ 1 being a hyperparameter which controls
the importance of the error measures during training.

E. Route Prediction

The route prediction is based on the assumption that
the driver is likely to take the best possible route. Having
calculated ŷ, the destination scores for all regions are known.
The route prediction algorithm calculates the route from the
last known position to the top-n destinations. Subsequently,
each route gets assigned the score of the destination it leads
to. Since in most cases, the top-n destinations are in the same
area, the calculated routes overlap up to a certain distance.
The score of visiting the overlapping parts of the routes is
therefore assumed to be equal to the sum of the scores of the
individual routes. Therefore, it is possible to retrieve higher
scores for near future routes. This is important since, for
example, a recommendation system for gas stations will only
present a prediction to the driver when the possibility that

the driver is taking the assumed route is over some threshold.
In that case, it is not necessary to exactly know the final
destination but to know the route in the near future.

IV. EVALUATION

In this section, the datasets, experimental results of the
introduced models are presented.

A. Datasets

Both datasets used in this work are publicly available and
contain data collected from taxis. The first dataset, the Porto
dataset, was published on Kaggle as the basis for a taxi
trajectory prediction challenge [2] and is also used in several
other works [11], [15], [16], [17], [20]. It contains 1,710,670
trajectories of 442 taxis operating in the city of Porto,
Portugal. The recording of the data took place over a period
of one year starting in July 2013. The second dataset [21]
contains 927,976 trajectories of 536 taxis collected over 30
days in San Francisco, USA. This dataset was also processed
in different other works [16], [20] and is further referred to
as the San Francisco dataset. In contrast to the Porto dataset
where the trajectories are given as a univariate time-series
with an interval of 15 s, the update interval varies for the
observations in the San Francisco dataset with a mean of
63.3 s and a standard deviation of 52.58 s.

B. Data Preprocessing

Before the data can be fed to a model it needs to be
processed. The data preprocessing consist of four different
steps (see Table I): (1) Initially, all trips that are either
extremely short (t < 2min), extremely long (t > 120min)
or consist of only a single datapoint are deleted. This is
done based on the assumption that most of these irregularities
occur due to recording issues. (2) To further enhance the data
quality, trips containing erroneous data points, e.g. due to
GPS errors or incorrectly handled taximeters are conditioned
as follows: If the assumed speed between two consecutive
points exceeds 240 km/h, the outliers are smoothed by
applying a moving median filter. (3) Afterward, all trips that
still contain locations outside of the defined area (exemplarily
displayed for Porto in Fig. 2) are deleted. (4) Roundtrips
or sightseeing trips have no value for destination prediction
models but are existent especially in taxi data. To clean
those trips we introduce a roundtrip factor τ , describing the
relation between the length of a trip and the linear distance
between start and destination:

τ =

∑N
n=1DH(pn, pn+1)

DH(p1, pN)
. (5)

The city topology, as well as the frequency of the update
intervals, affects what can be considered as a roundtrip. Thus,
the threshold for τ needs to be chosen separately for each
dataset. For the Porto dataset, we choose τP = 3.5, which
corresponds to the 95th percentile of the distribution of τP
over all trips in the dataset at this preprocessing step. Thus,
all trips that are longer than 3.5 times the beeline between
their start and destination are deleted. For the San Francisco

TABLE I: Data preprocessing steps.

Step Number of trips

Porto San Francisco

- 1,710,670 (100.0 %) 927,976 (100.0 %)
(1) 1,638,681 (95.79 %) 820,108 (88.37 %)
(2) 1,638,681 (95.79 %) 820,108 (88.37 %)
(3) 1,630,112 (95.29 %) 815,403 (87.87 %)
(4) 1,545,240 (90.33 %) 700,197 (75.44 %)

dataset, we choose τSF = 2.65, being more restrictive, due
to the longer update intervals between two consecutive data
points. After preprocessing, the Porto dataset is reduced
to 1,545,240 trajectories which accounts for 90.33 % of
the data. The San Francisco dataset is reduced to 700,197
trajectories (75.44 %).

C. Hyperparameter Optimization

To find the best performing set of parameters2, a hyper-
parameter optimization is performed for all models on two
NVIDIA Quadro P5000 Graphics Processing Units (GPUs).
To evaluate the models and to provide the necessary com-
parability, all models are trained, evaluated and tested on
the same preprocessed datasets. Due to the large amount of
data the models are trained on 90 % of the data randomly
sampled from the datasets. The remaining 10 % are equally
split in validation and test set which still results in a set size
of 35.000 trajectories for the smaller San Francisco dataset.

During optimization we found that if α 6= 1 at the
beginning of the training process, E1

pred and E2
pred are im-

proving very slowly. However, a good method to prevent
this behavior and to accelerate the training process is to set
α = 1 for the first e epochs. This leads to a fast reduction of
E1

pred and an accompanying slower reduction of E2
pred. If α

is decreased after e epochs, E2
pred converges close to E1

pred.

D. Experimental Results

In addition to the LSTM-based approach, three alternative
approaches are evaluated. The preprocessing procedure as
well as the space discretization process are equal for all the
approaches.

The first approach, called Baseline Algorithm, is solely
based on the trigonometrical relationship between the partial
trajectory and the centroid coordinates. First, a set of destina-
tion candidates, consisting of the top-k most visited regions
is calculated. The predicted destination is then equal to the
centroid coordinates of the destination candidate, closest to
the extension of the straight line going through the first and
last point of the partial trajectory.

The second approach is based on an MLP. Due to the
architectural requirements of MLPs, the input has to be a
fixed-size vector. As in the work of Brebisson et al. [15], this
problem is overcome by feeding the model with the first and
last j locations, respectively regions, of the query trajectory.

2https://doi.org/10.6084/m9.figshare.11698500

TABLE II: Comparison of the different models.

Porto San Francisco

Model E1
pred E2

pred E1
pred E2

pred

Baseline Algorithm 2504m - 2103m -
Single-Input MLP 1595m 1635m 1573m 1672m
Single-Input LSTM 1460m 1567m 1300m 1462m
Multi-Input LSTM 1430m 1480m 1315m 1388m

Additionally, a single-input, LSTM-based approach is
evaluated, that only takes the query trajectory as input and
serves as a reference to quantify whether the prediction accu-
racy can be improved by considering contextual information.

Table II shows the results achieved on the test sets. Since
the Baseline Algorithm only outputs a single destination
prediction, it is only evaluated with respect to E1

pred.
In general the models behave similarly on both datasets

with E2
pred being slightly higher than E1

pred. This originates
from the fact, that scores for regions that are on opposite
sides from the true destination eliminate each other for some
degree when ŷGPS is calculated which results in a lower E1

pred.
Regarding the different approaches, both LSTM-based

models outperform the MLP-based model. This supports the
assumption that LSTM-based models are superior when it
comes to handling long-term dependencies. However, the
small difference in performance implies that the first and
last j locations of a query trajectory hold most of the
information regarding the final destination. As displayed,
concerning E2

pred, the multi-input LSTM-based models are
superior to the single-input model, which only considers
the trajectory information. This strengthens the presumption
that the consideration of contextual information contributes
to better prediction performance. However, the difference in
performance between the two approaches is less than 6% for
E2

pred and for E1
pred the single-input model even outperforms

the multi-input model on the San Francisco dataset. This may
be due to the limitation to taxi data. For private cars, the
correlation between the metadata and the destination may be
higher, due to regularities introduced by commuting patterns.

Fig. 4 shows E1
pred and E2

pred of the final three ANN-
based models and the Baseline Algorithm according to the
given proportion p of the full trajectory. If only 5% of the
trajectory is given, both errors of the ANN-based models
are between 2.9 km and 3 km on the Porto dataset and
between 3.5 km and 4.3 km on the San Francsisco dataset.
If each query trajectory consists of 50 % of its full trajectory,
on average, the weighted predictions of the multi-input
models are 1.237 km (Porto) and 1.188 km (San Francisco)
away from the true destination. For all approaches, E1

pred
and E2

pred decrease with an increasing length of the given
partial trajectory. The gap between E1

pred and E2
pred increases

accordingly for each of the models. However, there is a larger
difference for the single-input LSTM compared to the multi-
input LSTM.

Fig. 5 shows the distribution of E1
pred of the final multi-

input LSTM-based models according to the trajectory com-

https://doi.org/10.6084/m9.figshare.11698500

0 20 40 60 80 100
Trajectory completion, p (%)

500

1000

1500

2000

2500

3000

3500

4000

4500
D

is
ta

n
ce

in
m

Porto

E1
pred Multi-Input LSTM

E2
pred Multi-Input LSTM

E1
pred Single-Input LSTM

E2
pred Single-Input LSTM

E1
pred Single-Input MLP

E2
pred Single-Input MLP

E1
pred Baseline

0 20 40 60 80 100
Trajectory completion, p (%)

San Francisco

Fig. 4: E1
pred and E2

pred according to trajectory completion.

5 15 25 35 45 55 65 75 85 95
Trajectory completion, p (%)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
or

ti
on

of
tr

a
je

ct
or

ie
s

Porto

Distance between
predicted and

true destination

≤ 100 m

≤ 200 m

≤ 300 m

≤ 400 m

≤ 500 m

≤ 600 m

≤ 700 m

≤ 800 m

≤ 900 m

≤ 1000 m

5 15 25 35 45 55 65 75 85 95
Trajectory completion, p (%)

San Francisco

Fig. 5: Distribution of E1
pred according to trajectory comple-

tion.

pletion. It can be observed that the prediction accuracy
improves regularly with the length of the given trajectory.
Comparing the datasets, we can observe that, for low com-
pletion rates, the predictions are more accurate on the Porto
dataset and that the proportion of predictions that are closer
than 100m to the true destination is twice as high as for the
San Francisco dataset.

We additionally evaluated the models based on a snippet of
length t, which is randomly sampled from the full trajectory
is given. If 2 minutes of the trip are given, E1

pred and E2
pred of

the LSTM-based models are about 1.5 km for both datasets.
Fig. 6 shows a route and destination prediction for a query

trajectory, starting in the city center (green marker) and
ending at the airport (blue marker). In Fig. 6a, the car has
only traveled a small distance (orange marker) and therefore
the top-5 predicted regions (green squares) are widely spread.
However, the traveling direction of the car is already roughly
determined. At the time of the second prediction (Fig. 6b),
made close to the highway exit which leads to the harbor,

(a) t = 15 s (b) t = 270 s

(c) t = 315 s (d) t = 600 s

Fig. 6: Route and destination prediction.

all predicted regions lie in the harbor area. Shortly after
passing the exit (Fig. 6b), the top-5 predictions jump to the
airport area and remain there until the car arrives. Thus, after
roughly 50 % of the route, the prediction is already very
accurate and the top-5 predicted routes (dotted orange lines)
match the true ongoing trajectory (dotted blue line) to a high
degree. Thus, the approach is not only able to determine that
the driver is very likely to go to the airport, but also to predict
the route he is going to take.

E. Kaggle

The Kaggle competition is already over, but it is still
possible to submit results and receive a ranking on an
unknown test set. Our best multi-input model, optimized only
against E1

pred achieved a mean haversine distance of 1.995 km
and would have ranked first out of 381 submissions.

V. ADVANTAGES OF THE PROPOSED METHOD

Our method is designed to predict the route and destination
of a car without using personalized location data. In our
approach, data is collected from a crowd of anonymous users
with no knowledge about personal patterns or regularities.
Therefore, no personalized data is needed to train the models
or to make predictions. Personalized destination prediction
approaches [3], [4], [5], [6], [16] try to learn the mobility
patterns of a specific user to predict future movements.
Compared to those approaches, our method is more broadly
applicable in practice, especially when it comes to private
cars since the handling of personalized location data from
customers is highly critical and raises privacy concerns.
Additionally, our model can make a prediction even if the
user has never been to the city before.

The presented approach not only solves the top-1 des-
tination prediction problem but can also predict multiple
destinations and their probabilities. The probability assign-
ment is an important advantage when it comes to practical
use cases. It allows recommendation systems to consider
whether a suggestion based on the destination prediction
should be made to the driver or not. This is important
since too many inappropriate suggestions based on unsure
destination predictions would lead to the user no longer using
the respective system.

Further, our approach achieves good prediction accuracies
not only for partial trajectories of any length but also for
partial trajectories where the starting point is not known.
This may be necessary because a constant recording of the
trajectory may not be permitted in practice due to privacy
regulations.

VI. CONCLUSIONS AND FUTURE WORK

For many intelligent applications, which aim to improve
the driving experience, knowledge about a driver’s intended
route and destination is crucial. This work introduces three
destination prediction models based on ANNs, able to solve
this problem. The chosen datasets are analyzed, cleaned
and processed. The location data is transformed using a
k-d tree-based spatial partitioning approach. The results,
achieved on the Porto and San Francisco datasets, show
that the best performing models are able to predict the
destination based on randomly cut query trajectories with
an average accuracy of 1.43 km and 1.3 km respectively.
Even without considering the additionally given contextual
data of the Kaggle competition, the multi-input LSTM-
based model would have scored first out of 381 approaches.
Additionally, the models can predict multiple destinations
and their probabilities at any time of the trajectory. In
combination with the introduced route prediction, valuable
input for multiple in-car applications can be produced.

One potential limitation of our work is that we were
only able to evaluate it on data collected from taxis. This
may introduce bias compared to the results we would have
achieved for private cars. In the next steps, we want to
evaluate the method on data collected from private cars and
analyze the impact of the metadata used for prediction.

As for most deep-learning approaches, our models lack
explainability. For future work, it may be interesting to
implement an attention mechanism. The neural attention
mechanism has the possibility to enhance the interpretabil-
ity [23] and would therefore allow us to draw conclusions
which parts of the trajectories are especially important for
predicting the destination.

REFERENCES

[1] P. Valdes-Dapena, “Most drivers who own cars with
built-in GPS systems use phones for directions,”
2016. [Online]. Available: https://money.cnn.com/2016/10/10/autos/
car-navigation-frustration/index.html

[2] Kaggle Inc., “ECML/PKDD 15: Taxi Trajectory Predic-
tion,” 2015. [Online]. Available: https://www.kaggle.com/c/
pkdd-15-predict-taxi-service-trajectory-i/data

[3] J. Krumm and E. Horvitz, “Predestination: Inferring Destinations from
Partial Trajectories,” in UbiComp, 2006, pp. 243–260.

[4] F. Dantas Nobre Neto, C. d. S. Baptista, and C. E. C. Campelo,
“Combining Markov model and Prediction by Partial Matching com-
pression technique for route and destination prediction,” Knowledge-
Based Systems, vol. 154, pp. 81–92, 2018.

[5] C. Manasseh and R. Sengupta, “Predicting driver destination using
machine learning techniques,” in 16th International IEEE Conference
on Intelligent Transportation Systems (ITSC 2013), 2013, pp. 142–147.

[6] R. A. Stegmann, I. Žliobaitė, T. Tolvanen, J. Hollmén, and J. Read,
“A survey of evaluation methods for personal route and destination
prediction from mobility traces,” Wiley Interdisciplinary Reviews: Data
Mining and Knowledge Discovery, p. e1237, 2018.

[7] L. Wang, M. Wang, T. Ku, Y. Cheng, and X. Guo, “A hybrid model
towards moving route prediction under data sparsity,” in 2017 20th
International Conference on Information Fusion, 2017, pp. 1–8.

[8] Y. Lassoued, J. Monteil, Y. Gu, G. Russo, R. Shorten, and M. Mevis-
sen, “A hidden Markov model for route and destination prediction,” in
2017 IEEE 20th International Conference on Intelligent Transporta-
tion Systems (ITSC), 2017, pp. 1–8.

[9] X. Li, M. Li, Y.-J. Gong, X.-L. Zhang, and J. Yin, “T-DesP: Destina-
tion Prediction Based on Big Trajectory Data,” IEEE Transactions on
Intelligent Transportation Systems, pp. 2344–2354, 2016.

[10] R. Simmons, B. Browning, Y. Zhang, and V. Sadekar, “Learning to
Predict Driver Route and Destination Intent,” in 2006 IEEE Intelligent
Transportation Systems Conference, 2006, pp. 127–132.

[11] Y. Endo, K. Nishida, H. Toda, and H. Sawada, “Predicting Destina-
tions from Partial Trajectories Using Recurrent Neural Network,” in
Advances in Knowledge Discovery and Data Mining, 2017, pp. 160–
172.

[12] P. Pecher, M. Hunter, and R. Fujimoto, “Data-Driven Vehicle Trajec-
tory Prediction,” in Proceedings of the 2016 ACM SIGSIM Conference
on Principles of Advanced Discrete Simulation, ser. SIGSIM-PADS
’16. New York, NY, USA: ACM, 2016, pp. 13–22.

[13] A. Y. Xue, J. Qi, X. Xie, R. Zhang, J. Huang, and Y. Li, “Solving the
data sparsity problem in destination prediction,” The VLDB Journal,
vol. 24, no. 2, pp. 219–243, 2015.

[14] Q. Liu, S. Wu, L. Wang, and T. Tan, “Predicting the Next Location:
A Recurrent Model with Spatial and Temporal Contexts,” in Proceed-
ings of the Thirtieth AAAI Conference on Artificial Intelligence, ser.
AAAI’16. AAAI Press, 2016, pp. 194–200.

[15] A. d. Brébisson, É. Simon, A. Auvolat, P. Vincent, and Y. Bengio,
“Artificial Neural Networks Applied to Taxi Destination Prediction,”
CoRR, vol. abs/1508.00021, 2015.

[16] A. Rossi, G. Barlacchi, M. Bianchini, and B. Lepri, “Modelling
Taxi Drivers’ Behaviour for the Next Destination Prediction,” IEEE
Transactions on Intelligent Transportation Systems, pp. 1–10, 2019.

[17] H. T. Lam, E. Diaz-Aviles, A. Pascale, Y. Gkoufas, and B. Chen,
“(Blue) Taxi Destination and Trip Time Prediction from Partial Tra-
jectories,” in Proceedings of the 2015th International Conference on
ECML PKDD Discovery Challenge, 2015, pp. 63–74.

[18] J. Froehlich and J. Krumm, “Route Prediction from Trip Observa-
tions,” in Society of Automotive Engineers World Congress, 2008.

[19] F. Dantas Nobre Neto, C. d. S. Baptista, and C. E. C. Campelo, “A
user-personalized model for real time destination and route prediction,”
in 2016 IEEE 19th International Conference on Intelligent Transporta-
tion Systems (ITSC), 2016, pp. 401–407.

[20] P. C. Besse, B. Guillouet, J.-M. Loubes, and F. Royer, “Destination
Prediction by Trajectory Distribution-Based Model,” IEEE Transac-
tions on Intelligent Transportation Systems, pp. 1–12, 2017.

[21] M. Piorkowski, N. Sarafijanovic-Djukic, and M. Grossglauser,
“CRAWDAD dataset epfl/mobility (v. 2009-02-24),” 2009.

[22] Y. Bengio, R. Ducharme, P. Vincent, and C. Janvin, “A Neural
Probabilistic Language Model,” J. Mach. Learn. Res., vol. 3, pp. 1137–
1155, 2003.

[23] K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhudinov,
R. Zemel, and Y. Bengio, “Show, Attend and Tell: Neural Image
Caption Generation with Visual Attention,” in Proceedings of the 32nd
International Conference on Machine Learning, 2015, pp. 2048–2057.

https://money.cnn.com/2016/10/10/autos/car-navigation-frustration/index.html
https://money.cnn.com/2016/10/10/autos/car-navigation-frustration/index.html
https://www.kaggle.com/c/pkdd-15-predict-taxi-service-trajectory-i/data
https://www.kaggle.com/c/pkdd-15-predict-taxi-service-trajectory-i/data

	Introduction
	Related Work
	Proposed Approach
	Definitions and Problem Statement
	Space Discretization
	Modeling
	Test Design
	Route Prediction

	Evaluation
	Datasets
	Data Preprocessing
	Hyperparameter Optimization
	Experimental Results
	Kaggle

	Advantages of the proposed Method
	Conclusions and Future Work
	References

