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ABSTRACT
Center touchscreens are the main Human-Machine Interface (HMI)
between the driver and the vehicle. They are becoming, larger, in-
creasingly complex and replace functions that could previously
be controlled using haptic interfaces. To ensure that touchscreen
HMIs can be operated safely, they are subject to strict regulations
and elaborate test protocols. Those methods and user trials require
fully functional prototypes and are expensive and time-consuming.
Therefore it is desirable to estimate the workload of specific inter-
faces or interaction sequences as early as possible in the develop-
ment process. To address this problem, we envision a model-based
approach that, based on the combination of user interactions and
UI elements, can predict the secondary task load of the driver when
interacting with the center screen. In this work, we present our
current status, preliminary results, and our vision for a model-based
system build upon large-scale natural driving data.
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1 INTRODUCTION
According to the National Highway Traffic Safety Administration
(NHTSA) [15] 3,142 people were killed and 424,000 people were
injured in crashes where drivers were distracted from the main
driving task. Although the number of driver monitoring systems
has increased steadily in recent years, a decrease in the number
of accidents due to distracted driving can’t be observed. Whereas
the usage of smartphones during driving plays a major role, there
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are concerns that the increase in complexity, capability, and size
of touchscreen-based HMIs will additionally increase the driver’s
cognitive workload. To prevent automotive HMIs from being too
distracting, they undergo expensive and time-consuming empirical
testing before they can be integrated into production line vehicles.
While such measures are essential and will remain necessary, early
feedback on potentially distracting usage patterns can be valuable
for UX experts to design systems that are safe to use. A system that
can predict the secondary task load based on the anticipated UI
interactions and their properties, such as the sequence in which
they occur, can help UX experts to detect potentially distracting
designs at an early stage and to develop appropriate alternatives. To
enable such predictions, we envision a system leveraging driving
and interaction data, automatically collected from a large amount
of production line vehicles. Having access to such large-scale data
makes it possible to generate insights that go beyond the detail
of current, mostly qualitative or relatively small-scale naturalistic
driving studies [5]. Additionally, as soon as a software update is
deployed to the fleet, the changes that were made can directly
be assessed. In this work, we investigate how the engagement of
drivers with the touch-based HMI can be measured using driving
parameters and UI interaction data.

2 RELATEDWORK
Driver distraction measurement is a well-studied field of research
that will remain relevant even in the approaching age of automated
driving. Drivers will have to take over control of the vehicle in
certain situations for a long time to come. For this reason, multi-
ple approaches deal with driver distraction modeling and predic-
tion. Many of such approaches are based on physiological data
[1, 8, 19, 20] or eye-tracking data [7, 16, 17]. Whereas many of
these approaches provide promising results and have proven their
capability to effectively detect distracted driving, multiple factors
prevent their large-scale usage. The main drawback of approaches
based on physiological data is the fact that sensors need either to
be attached to the body of the driver, or additional measurement
units need to be installed in the car. This makes it nearly impossible
to apply such methods outside of experimental environments or
naturalistic driving studies. For approaches based on eye tracking,
the costs of highly accurate eye-tracking systems are still a limiting
factor for widespread deployment in production vehicles. Due to
the highly sensitive nature of the data, most Original Equipment
Manufacturers (OEMs) are reluctant to store video or gaze data.
In contrast, methods based on driving data [4, 10, 12–14, 18] such
as steering wheel angle, speed deviations, or vehicle accelerations,
are more suitable for large-scale use cases since the data is already
available in all modern cars and no additional instrumentation is
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Table 1: Processed Signals

Variable Unit Description Frequency

v km\h Vehicle Speed 5Hz
θ ◦ Steering Wheel Angle 5Hz
S - ADAS Status On Change
UI - Touchscreen Event On Change

necessary. In 1999 Nakayama et al. [14] introduced the so-called
Steering Entropy metric, showing clear correlations between an
increase in driver workload and steering behavior. Additionally,
Markkula and Engström [13] introduced the Steering Wheel Rever-
sal Rate (SWRR) and compared it to other steering angle metrics
concerning their sensitivity to the effect of secondary task work-
load on lateral control performance. Markkula and Engström found
that the SWRR and the Steering Entropy are superior compared
to other metrics. Whereas the original experiments and most of
the studies that build upon the findings of Nakayama et al. and
Markkula and Engström are based on data retrieved from simulator
studies, a recent approach by Li et al., based on natural driving
data, shows a clear correlation between driver distraction and high
steering entropy. However only 16 drivers over 12 days contributed
to the data collection and additional instrumentation was installed
in the cars.

3 APPROACH
To model the effect specific user interactions or usage patterns on
the touchscreen HMI have on secondary task load, a large amount
of data is needed. This is due to the many UI elements and the even
larger number of potential combinations in modern HMIs, as well
as due to the diverse range of driving situations for which the effect
might be different. Collecting this amount of data in naturalistic
driving studies is time-consuming and expensive. Therefore, we
want to base our approach on data collected from production ve-
hicles. However, this results in a variety of other challenges. In
contrast to laboratory studies, strict data protection regulations
must be met, preventing the collection of personalized data. Addi-
tionally, due to the many different participants and the uncontrolled
driving environment, the data quality is significantly different com-
pared to simulator studies or controlled naturalistic driving studies.
This makes a detailed data analysis and preprocessing necessary. In
this work, we present our current state of research, namely the data
collection and processing methods, the first preliminary results,
and our research agenda.

3.1 Data Collection and Processing
The data used in this work is collected via a telematic framework
that allows live Over-The-Air (OTA) data transfer from the car
to the backend where the data is processed. The framework is
available in the new generation of production vehicles and no
additional instrumentation is needed. Detailed descriptions of the
telematics architecture, processing framework, and data collection
are provided by Ebel et al. [6].

First, interaction sequences are extracted. The event sequence
data consists of timestamped events containing the name of the

interactive UI element that was triggered by the user and the type
of gesture that was detected. We consider an interaction sequence
to be a sequence of interactions where the time interval between
two consecutive interactions is less than tmax = 10 s . In the second
step, the interaction data is enriched with the driving data shown in
Table 1. We only consider sequences in which the driver assistance
systems were not active. For the remaining sequences, we also
consider the driving data immediately preceding the first and im-
mediately following the last interaction of a sequence. This is based
on the assumption that the anticipated interaction with the HMI,
before the actual gesture on the touchscreen is made, already influ-
ences the driving behavior. The same applies to the driving behavior
shortly after the last interaction, as drivers tend to wait for visual
confirmation and then reach back to the steering wheel. Consider-
ing the findings made by Large et al. [11], Green et al. [9], and Pettitt
and Burnett [17], we choose a duration of tbuffer = 2 s . Applying
the introduced prepossessing steps, 29,055 interaction sequences
are extracted. To compare the driving behavior during interaction
sequences with the driving behavior during no-interaction sequences
we sampled the same amount of driving data snippets from se-
quences where no interactions were made. However, compared to
a controlled experiment we define the no-interaction sequences
such that during those periods no interactions were made with the
in-vehicle HMI. We can’t control for distractions happening outside
of the head unit, for example, due to phone usage or passengers.
To make a valid comparison between interaction sequences and
no-interaction sequences we apply stratified sampling, such that
the distribution in sequence length is equal in both groups.

After sequence extraction, aggregated statistics for each sequence
as well as driver distraction metrics, namely SWRR (1, 2, and 5
degree according to Markkula and Engström [13]) and Steering
Entropy (SE) (according to Nakayama et al. [14] with adjustments
proposed by Boer et al. [2] to avoid extremely high entropies based
on outliers) are calculated. Since no personalized data is available it
is not possible to calculate a personalized α for the SE metric. We,
therefore, averaged over all no-interaction sequences to obtain an
average α .

3.2 Preliminary Results
Similar to Markkula and Engström [13], we compare the steering
wheel metrics based on their standardized effect size d [3] and
two different driving conditions. We differentiate between straight
driving and curved driving since previous work [2, 13, 14] found
that the SE and SWRR metrics are highly sensitive with regard to
the road curvature.

As shown in Fig. 1 one can observe the difference in effect size
between straight and curved driving, meaning that interaction and
no-interaction sequences can be better separated for straight driv-
ing. The SWRR metrics are even more affected than the steering
entropy. In general, the standardized effect sizes are smaller than re-
ported by Markkula and Engström [13] (e.g. dSE = 0.34 for the data
in this work compared to dSE = 0.8). Multiple reasons may cause
this difference. The first and probably most important difference
is the driving context in which the data was collected. Whereas,
the dataset at hand comprises of multiple different driving sce-
narios, drivers, and interactions, the data used by Markkula and
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Figure 1: Standardized effect sizes for the steering wheel metrics and driving conditions (straight, curved)
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(b) 2◦ Steering Wheel Reversal Rate

Figure 2: Steering Entropy and SteeringWheel Reversal Rate for straight driving sequences with HMI Interaction and without
HMI interaction for different speed buckets.

Engström was collected in a field study, where 48 participants drove
the same sequence on a motorway performing the same two tasks.
Additionally, we did not yet tune the metrics to increase sensitivity.

In Fig. 2 a comparison between interaction and no-interaction
sequences for straight driving is presented. We report the SE and
the 2◦ SWRR since they have been found to be most sensitive. Even
though the driving environment is highly uncontrolled andmultiple
confounding factors can influence the driving behavior, one can
clearly observe the anticipated differences between interaction and
no-interaction sequences for the SWRR and for the SE. One can
see that the SE is larger for smaller vehicle speeds. Whereas the
2◦ and 5◦ SWRR measures show the same effect, this trend is not
observable in the 1◦ SWRR (not displayed). A comparison of the
1◦ SWRR with the results from the field experiment conducted by
Engström et al. [7] lead to similar results in the absolute values and

the difference between interaction sequences and no-interaction
sequences.

3.3 Research Agenda
The preliminary results show that, even in the highly uncontrolled
setting of real-world data, both metrics studied are suitable to mea-
sure secondary task load induced by HU touch interactions. In
particular, the SE provides promising results in terms of sensitivity.
Next, we plan to adjust the metrics to increase sensitivity. Then,
building on the current state of work, we plan to evaluate the cor-
relation between specific UI elements, interactions or interaction
patterns, and driver distraction. Proving this correlation is an im-
portant step toward a predictive model of secondary task load. To
then draw conclusions about the workload induced by specific in-
teractions with certain UI elements, we plan to perform a feature
importance analysis. First, we will use a machine learning-based
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approach to predict steering entropy based on the proportion of
different interactions (e.g. list tap or map drag) and additional meta-
data like the number of interactions and interaction density. The
insights generated via a feature importance analysis can then serve
as a first feedback on interactions and interaction patterns that
highly influence secondary task load. This information will then
serve as a basis for further, more detailed, approaches.

4 DISCUSSION
In this work in progress, we present our planned approach to de-
velop a model-based method, leveraging real-world data to predict
secondary task load induced by interactions with a touchscreen
HMI. The predictions should be based on the interactions and the
respective UI elements used and can serve as an early-stage es-
timate of driver distraction far before the first experiments are
conducted. Therefore, UX experts get early feedback on their de-
signs which supports them to design non-distracting interfaces that
increase road safety and additionally save costs since re-designs
due to necessary changes discovered late studies can be avoided.
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