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Multitasking While Driving: How Drivers Self-Regulate Their Interaction with
In-Vehicle Touchscreens in Automated Driving

Patrick Ebela, Christoph Lingenfelderb, and Andreas Vogelsanga

aUniversity of Cologne, Cologne, Germany; bMBition GmbH, Berlin, Germany

ABSTRACT
Driver assistance systems are designed to increase comfort and safety by automating parts of the
driving task. At the same time, modern in-vehicle information systems with large touchscreens
provide the driver with numerous options for entertainment, information, or communication, and
are a potential source of distraction. However, little is known about how driving automation
affects how drivers interact with the center stack touchscreen, i.e., how drivers self-regulate their
behavior in response to different levels of driving automation. To investigate this, we apply multi-
level models to a real-world driving dataset consisting of 31,378 sequences. Our results show sig-
nificant differences in drivers’ interaction and glance behavior in response to different levels of
driving automation, vehicle speed, and road curvature. During automated driving, drivers perform
more interactions per touchscreen sequence and increase the time spent looking at the center
stack touchscreen. Specifically, at higher levels of driving automation (level 2), the mean glance
duration toward the center stack touchscreen increases by 36% and the mean number of interac-
tions per sequence increases by 17% compared to manual driving. Furthermore, partially auto-
mated driving has a strong impact on the use of more complex UI elements (e.g., maps) and
touch gestures (e.g., multitouch). We also show that the effect of driving automation on drivers’
self-regulation is greater than that of vehicle speed and road curvature. The derived knowledge
can inform the design and evaluation of touch-based infotainment systems and the development
of context-aware driver monitoring systems.
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action; driver behavior;
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1. Introduction

Driver distraction is one of the main causes of motor vehicle
crashes. The primary goal of automated driving functions
like Adaptive Cruise Control (ACC) and Lane Centering
Assist (LCA), apart from making driving more comfortable,
is to make driving safer. Multiple studies show that these
systems can make driving safer by an increased time head-
way and that they reduce the incidence of critical situations
(Ervin et al., 2005; Faber et al., 2012). However, even though
automated driving functions are more widely available and
powerful than ever, the number of crashes based on human
error due to distraction stagnated in recent years (National
Center for Statistics & Analysis, 2021). Studies show that
driving automation does not only positively affect driving
safety but also tends to increase the margins in which driv-
ers consider it safe to engage in non-driving-related tasks
(Dunn et al., 2020; Morando et al., 2019; Risteska et al.,
2021). To interact with In-Vehicle Information Systems
(IVISs) or mobile phones while driving, drivers need to dis-
tribute their attention between the primary driving task and
the non-driving-related secondary task. Although drivers are
proven to self-regulate their secondary task engagements
based on driving demands (Christoph et al., 2019; Onate-
Vega et al., 2020; Oviedo-Trespalacios et al., 2019), this

task-switching behavior is directly associated with an
increased crash risk (Dingus et al., 2016). This is particularly
critical as drivers tend to overestimate the capabilities of
automated driving functions (DeGuzman & Donmez, 2021)
potentially making it more likely to engage in non-driving-
related tasks (Dunn et al., 2020) in situations in which they
are supposed to monitor these functions constantly (On-
Road Automated Driving (ORAD) committee, 2021).

As modern IVISs continue to improve and large center
stack touchscreens are becoming the main interface between
driver and vehicle, the temptation for drivers to interact
with them is likely to increase (Starkey & Charlton, 2020). A
deep understanding of how drivers self-regulate their sec-
ondary task engagements in response to varying driving
demands can facilitate the design of IVISs that are safe to
use in all situations (Ebel et al., 2021). Knowing what natur-
ally feels safe for drivers can also, improve attention man-
agement systems to provide situation-dependent
interventions when inappropriate self-regulation is detected
(Risteska et al., 2021). To better understand how drivers
adapt their engagement in secondary touchscreen tasks, we
investigate the effect of driving automation (manual vs.
ACC vs. ACCþ LCA), vehicle speed, and road curvature on
drivers’ tactical and operational self-regulation. We further
show how the effect of driving automation depends on
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vehicle speed and road curvature. Therefore, we employ
multilevel modeling on a real-world driving dataset consist-
ing of 31,378 user interaction sequences and the accompany-
ing driving and eye tracking data.

To evaluate tactical self-regulation, we fit generalized lin-
ear mixed models estimating the probability of drivers inter-
acting with specific UI elements. Our results show that
drivers self-regulate their interaction behavior differently
across the UI elements. During ACCþ LCA driving, the
odds of a driver interacting with a map element are, for
example, 1.62 times as high as for manual driving. The
probability to interact with a regular button, however,
remains similar.

Furthermore, we measure drivers’ operational self-regula-
tion as glance behavior adaptions. The multilevel modeling
results indicate that drivers adapt their glance behavior
based on automation level, vehicle speed, and road curva-
ture. Across all driving situations, the mean glance duration
increases by 12% for ACC driving compared to manual
driving and by 36% for ACCþ LCA driving. The odds that
drivers perform a glance longer than 2 seconds are 1.6 and
3.6 times as high, respectively.

1.1. Relation to previous publications

This article is an extension of a previous publication (Ebel
et al., 2022). In the article at hand, we make the following
additional contributions:

� We base our analysis on three times as much data as in
the previous article. In our previous work, we analyzed
10,139 driving sequences from a time period of three
months (October 2021–February 2022). In the article at
hand, we have extended this dataset to 31,378 driving
sequences from one year (October 2021–October 2022).

� We have refined the data processing and the statistical
models. First, in contrast to our previous work, we
removed all sequences during which the driver did not
perform a gaze transition between the center stack
touchscreen and the road. Therefore, we only consider
sequences during which regulations actually happened.
Secondly, we extended our statistical models to also
account for different car types as random effects.

� In the previous article, we only analyzed the effect of
driving automation, vehicle speed, and road curvature on
glance behavior and interactions with specific UI ele-
ments. We now also analyze how these factors affect the
number of interactions and the number of touch gestures
within a sequence.

Due to the improvements in data processing and the
larger dataset, the results of this article are not directly com-
parable with the results of our previous article in terms of
absolute numbers. However, our results confirm the general
trends observed in the previous article. In particular, this
article confirms the finding that, at the tactical level, drivers’
self-regulation of complex touchscreen interactions is more
sensitive to driving demand than that of simple interactions.

1.2. Driver distraction

Driving a car is a complex task. It requires drivers to simul-
taneously perform different activities. They need to watch
and follow the road, perform steering and pedal movements,
and react to sudden changes in the driving environment
(Regan & Oviedo-Trespalacios, 2022). Despite the complex-
ity of the driving task, drivers tend to engage in non-driving
related activities like talking to the passenger or interacting
with the smartphone or the IVIS. Regan et al. (2009)
describe the interaction with devices like mobile phones or
IVISs as a competing activity. These interactions compete
with the resources required to perform activities critical for
safe driving. Thus, driver distraction is defined as the
“diversion of attention away from activities critical for safe
driving toward a competing activity” (J. Lee et al., 2008).
Whereas various types of driver distraction exist, we will
focus on visual distraction. Visual distraction is concerned
with drivers taking their eyes off the road. Thus it is also
described as the “[d]iversion of attention towards things that
we see” (Regan & Oviedo-Trespalacios, 2022). Studies show
that visual distraction is correlated with increased crash risk.
Klauer et al. (2006) found that glances off the road longer
than two seconds increase the crash risk by two times com-
pared to normal driving. Accordingly, the “Visual-Manual
NHTSA Driver Distraction Guidelines for In-Vehicle
Electronic Devices” (National Center for Statistics &
Analysis, 2014) define upper bounds for glances longer than
two seconds. This shows that visual distraction is an impor-
tant factor that needs to be considered when designing
IVISs.

1.3. Drivers’ self-regulative behavior

While interacting with touch-based IVISs, drivers divide
their visual attention between the primary driving task and
the secondary touchscreen interaction. Research shows that
drivers actively self-regulate their multitasking behavior to
maintain safe driving. They adapt their level of engagement
to mitigate the risks associated with the secondary task
demands (Rudin-Brown, 2013). According to Rudin-Brown
(2013), this self-regulative behavior can be intentional or
unintentional. The authors further argue that it occurs at
three distinct levels derived from Michon’s driver task
model (Michon, 1985): strategic, tactical, and operational.

Strategic self-regulation describes driver decisions that are
made on a timescale of minutes or more (Rudin-Brown,
2013). These decisions are often constant over a trip. Some
drivers, for example, report that they never engage in a sec-
ondary task in heavy traffic, in poor weather conditions, or
when driving at nighttime (Young & Lenn�e, 2010). Oviedo-
Trespalacios et al. (2019) modeled strategic self-regulation as
the decision to pull over to perform a secondary task. In
this study, some drivers made the strategic decision to not
engage in secondary tasks while driving.

Tactical self-regulation refers to a driver’s decision to
engage in a secondary task according to the driving demand.
Drivers make tactical decisions in the time frame of seconds
(Rudin-Brown, 2013) and continuously update them while
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driving. Many studies investigate drivers’ engagement in
mobile phone tasks while driving. The results show that
drivers are less likely to engage in a visual manual phone
task when driving demands are high (high speed, sharp
turns, etc.) (Hancox et al., 2013; Ismaeel et al., 2020;
Oviedo-Trespalacios et al., 2018,1; Tivesten & Dozza, 2015).
Tivesten and Dozza (2015) show that drivers use informa-
tion about the upcoming driving demand to decide whether
or not to engage in a secondary task. Somewhat contrary
results are presented by Horrey and Lesch (2009). The
authors found that, although drivers were well aware of the
demands of specific traffic situations, it had little influence
on the decision to engage in the secondary task. This is con-
sistent with findings presented by Carsten et al. (2017) who
show that drivers stopped engaging in easy tasks when the
driving demand increased but continued to engage in more
demanding secondary tasks. Liang et al. (2015) found that
drivers avoided initiating a secondary task before an imme-
diate transition to higher driving demands. However, drivers
did not postpone their secondary task engagement when
driving demand was already high (Liang et al., 2015).
Carsten et al. (2017) and Liang et al. (2015) argue that more
work is needed to evaluate the factors influencing tactical
self-regulation.

Operational self-regulation describes behavioral adaptions
made by the driver while actively engaging in a secondary
task. This implies that on the strategic and tactical level the
driver already decided to engage in a secondary task.
Operational self-regulation can be bidirectional. Research
shows that drivers adjust their driving behavior in terms of
vehicle speed, lane position, or time headway, when they
engage in a secondary task (Choudhary & Velaga, 2017;
Morgenstern et al., 2020; Onate-Vega et al., 2020; Oviedo-
Trespalacios et al., 2018; Schneidereit et al., 2017). On the
other hand, recent findings show that drivers also adjust
their secondary task engagement in response to variations in
driving demand. Oviedo-Trespalacios et al. (2019) found
that drivers temporarily stopped the use of mobile phones
to cope with varying driving demands (Oviedo-Trespalacios
et al., 2019). Similarly, in a test track experiment, Liang
et al. (2015) show that drivers adjust their time-sharing
behavior according to driving demands (Liang et al., 2015).
In addition, Tivesten and Dozza (2014) state that drivers
allow for more distraction in less demanding situations. In a
naturalistic driving study, drivers performed shorter off-road
glances during turning when a lead vehicle was present and
when they detected oncoming traffic (Tivesten & Dozza,
2014). Tivesten and Dozza (2014) further state that drivers
prioritize secondary tasks over monitoring the driving envir-
onment, especially in low-speed situations. Accordingly,
Risteska et al. (2021) show that drivers’ off-path glances
decrease in situations with higher visual difficulty (Risteska
et al., 2021).

1.4. The effect of driving automation on self-regulation

Many studies have investigated the effect of partially auto-
mated driving (Level 1 and Level 2 according to SAE J3016

(On-Road Automated Driving (ORAD) committee, 2021))
on drivers’ secondary task engagement. As laid out in the
following, the results suggest that more automation results
in less driver engagement and, thus, a lower capability to
correctly assess the current driving situation.

Lin et al. (2019) investigate drivers’ self-regulation in
Level 2 driving according to the levels of situation awareness
as proposed by Sch€omig and Metz (2013). On the control
level, which corresponds to operational self-regulation, they
found that drivers adapt their behavior according to the
severity of the hazard. Whereas they pause their engage in
case of urgent hazards, they continue to engage with a more
frequent task switching behavior) in case of less urgent haz-
ards. In addition, many studies investigated how drivers
allocate their visual attention during partially automated
driving. Results from the Virginia Connected Corridors
Level 2 naturalistic driving study (Dunn et al., 2020) indicate
that the use of Level 2 automation (i.e., ACCþ LCA) led to
drivers spending less time with their eyes on driving-related
tasks. In accordance, Gaspar and Carney (2019) found that
with partial automation activated, drivers made longer single
off-road glances and had longer maximum total-eyes-off-
road times (Gaspar & Carney, 2019). This finding is comple-
mented by the results presented by Yang et al. (2021) who
also found that off-road glances were longer in automated
driving conditions and additionally investigated the effect of
different levels of distraction. They found that off-road glan-
ces were longer for highly distracting secondary tasks (Yang
et al., 2021). Noble et al. (2021) assessed the effect of ACC,
LCA, and ACCþ LCA on drivers’ glance behavior and sec-
ondary task engagement. They found that during
ACCþ LCA driving, drivers execute longer and more fre-
quent glances away from the road (Noble et al., 2021). They,
however, did not find significant differences in the mean
off-road glance duration nor in the tactical self-regulation
when ACCþ LCA was active. Another naturalistic driving
study is presented by Morando et al. (2019) who found a
significant decrease in the percentage of time with eyes on
the road center when using ACCþ Lane Keeping Assist
(LKA) (Morando et al., 2019). In a subsequent study,
the authors investigated drivers’ glance behavior during dis-
engagements of Tesla’s Autopilot in naturalistic highway
driving (Morando et al., 2021). Whereas they found that all
off-road glances tended to be longer with AP compared to
manual driving, the difference was particularly big for glan-
ces down and toward the center stack. The mean glance
duration increased by 0.3 seconds and the proportion of
glances longer than 2 seconds increased by 425% in
Autopilot conditions compared to manual driving.

1.5. Research questions

We identify two main research gaps in the current state
of the art: (1) Current work is mainly focused on self-
regulation when interacting with mobile phones or when
engaging in general secondary tasks such as eating, drinking,
or talking to a passenger. No work addresses operational
and tactical self-regulatory behavior during explicit
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interactions with IVISs. (2) Whereas multiple studies
investigate the general effect of partial automation on driv-
ers’ self-regulation, there is yet no detailed investigation on
the interdependencies between driving automation, vehicle
speed, and road curvature (Figure 1).

Considering that modern IVISs are increasingly complex
and incorporate nearly all the functionality of smartphones
and that ACC and LCA are becoming more capable and
accessible, we argue that both aspects need to be examined
in more detail. Therefore, we aim to answer the following
research questions:

RQ1: To what extent do drivers self-regulate their behavior
on the tactical level when engaging in secondary touchscreen
tasks depending on driving automation, vehicle speed, and
road curvature?

RQ2: To what extent do drivers self-regulate their behavior
on the operational level when engaging in secondary
touchscreen tasks depending on driving automation, vehicle
speed, and road curvature?

RQ3: Does the effect of driving automation on drivers’
operational self-regulation vary in response to different driv-
ing situations?

2. Method

2.1. Data source and data collection

In this work, we analyze 31,378 interaction sequences
extracted from 10,402 individual trips. More than 100 test
vehicles and five different car models contributed to the
data collection from mid-October 2021 to mid-October
2022. The vehicles are part of the internal test fleet of
Mercedes-Benz. Figure 2 shows a vehicle with an interior
that is representative of the cars in the fleet. They are used
for a variety of testing procedures but also for transfer and
leisure drives of employees. All vehicles that are equipped
with the most recent software architecture, a stereo camera
for glance detection, and ACC and LCA technology, con-
tributed to the data collection. ACC automates the longitu-
dinal control and LCA supports the lateral control keeping
the car in the center of the lane. Both systems work at
speeds between 0 km/h and 210 km/h. An additional feature

is the so-called active traffic jam assist. If both systems are
active and the driver is in a traffic jam on a multi-lane road
with separate carriageways, the system can fully control
steering and acceleration up to 60 km/h. However, the driver
is still obliged to monitor the driving environment at all
times. Thus, it is still a Level 2 driving automation system
according to SAE J3016 (On-Road Automated Driving
(ORAD) Committee, 2021).

All data used in this work was collected over the air, via
the telematics data collection framework of Mercedes-Benz
(see In-Vehicle Logging Mechanism and Big Data Platform in
Figure 1). The In-Vehicle Logging Mechanism allows the col-
lection of interaction data via the Human-Machine
Interaction (HMI) Interface and the collection of driving
and camera data via the Controller Area Network (CAN).
Once a new configuration file is deployed to a car, the speci-
fied datapoints are logged and transferred to the Big Data
Platform. Here, the data is processed and anonymized. All
datapoints that were collected during the same trip are given
the same unique identifier. Afterward, interaction and driv-
ing data is stored in a data lake.

In this work, we analyze touchscreen interactions, driving
data (vehicle speed, steering wheel angle, and level of driving
automation), and eye tracking data. Steering wheel angle
and vehicle speed are logged at a frequency of 4Hz: For
each user interaction on the center stack touchscreen a data
point that consists of a timestamp, the interactive UI elem-
ent, and the coordinates of the fingers is logged. Based on
the name of the UI element, each interaction is mapped to

Figure 1. Schematic overview of the data collection and processing procedure. Adjusted according to Ebel et al. (2021) and Ebel et al. (2023).

Figure 2. A center stack touchscreen representative for the touchscreens eval-
uated in this work (Mercedes-Benz Group AG, 2023).
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one of the broader categories shown in Table 1. The type of
gesture that the driver performed is inferred based on the
press and release coordinates the detected touch points. To
control for touchscreen interactions that are not performed
by the driver, we also collect the seat belt signal of the front
passenger. This allows us to detect sequences in which a
passenger was present and might have interacted with the
center stack touchscreen.

The glance data is acquired using a stereo camera located
in the instrument cluster behind the steering wheel. The eye
tracking is primarily based on the pupil-corneal reflection
technique (Merchant, 1967), which is used in the majority
of remote eye tracking devices (Hutchinson et al., 1989).
The driver’s field of view is divided into different Area of
Interests (AOIs) and the system continuously keeps track of
the driver’s gaze by mapping it to one of the AOIs. The true
positive rate of the AOIs describing the center stack
touchscreen is above 90%. The system used in this research
is a production system without the ability to capture raw
video data.

2.2. Data processing

After the data is logged, anonymized, and stored, each signal
is further processed as outlined below and visualized in
Figure 1. These processing steps were developed in our pre-
vious work (Ebel et al., 2022; Ebel et al., 2021).

2.2.1. User interaction data
In contrast to controlled experiments, there is no predefined
secondary task that the drivers have to perform. We know
nothing about the drivers’ intentions and do not know,
which interactions belong together to perform a certain task.
We rather observe drivers’ natural behavior in an unbiased
setting. We, therefore, extract user interaction sequences
based on the assumption that drivers disengaged from
the secondary task when they do not interact with
the touchscreen for more than Dtmax ¼ 10 s (see Figure 1).

The next interaction is then considered the starting point of
a new interaction sequence.

2.2.2. Eye tracking data
We extract all glances toward the center stack touchscreen
between the first i1 and last interaction iN of each inter-
action sequence. To improve the quality of the eye tracking
data, we apply several filtering steps as depicted in Figure 3.
The processing is partially adapted from related work
(Morando et al., 2019) and follows ISO 15007-1:2020
(ISO/TC 22/SC 39 Ergonomics, 2020). (1) First, we filter all
eyelid closures shorter than 500 ms to remove normal blinks
and eyelid closures not associated with microsleeps. (2) To
handle short periods of tracking loss, we interpolate gaps
shorter than 300ms if the preceding AOI is equal to the
succeeding one, and (3) gaps shorter than 120ms if the pre-
ceding and succeeding AOIs are different. 120ms is the
shortest fixation that humans can control (ISO/TC 22/SC 39
Ergonomics, 2020) and shorter fixations are physiologically
impossible. Accordingly, to remove fly-throughs, (4) we also
interpolate all glances shorter than 120ms. When glances are
interpolated, the duration of the filtered glance or tracking
loss is added to the duration of the previous AOI if preceding
and subsequent AOIs are different (see (3) in Figure 3).

Table 1. Overview of the different UI elements and touch gestures used as target variables to model drivers’ tac-
tical self-regulation.

Category Description

UI elements
Button General buttons like push buttons or radio buttons
List List containers used, for example, to present destination suggestions
Homebar Static homebar on the bottom screens (e.g., music and climate controls)
AppIcon Application icons on the home screen, used to start an application
Tab Tab bar used to navigate between different views or subtasks
Map Map viewer that displays a map and allows for interactions with it
Keyboard Virtual keyboard or number pad to enter text
CoverFlow Animated widget that, for example, allows flipping through album covers
Slider Vertical or horizontal sliders used, for example, when changing the volume
RemoteUI Apple Car Play or Android Auto
ControlBar Menu controls to show context menus or popups
ClickGuard Non-interactive background elements
Other UI elements that do not fit any of the above categories
Unknown UI elements for which the identifier is not specified
Gestures
Tap A one finger touch on the screen without significant movement
Drag A one finger dragging motion
Multitouch A multi finger gesture

Figure 3. Glance processing procedure where i1 indicates the first touchscreen
interaction of a sequence and iN indicates the last one. (1) Eyelid closure shorter
than 500ms, preceding and subsequent AOI are similar (2) Loss of tracking
shorter than 300ms, preceding and subsequent AOI are similar (3) Loss of track-
ing shorter than 120ms, preceding and subsequent AOI are different (4) Fly-
through shorter than 120ms, preceding and subsequent AOI are similar.
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If preceding and subsequent AOI are similar, the surround-
ing glances are merged as shown in (1) in Figure 3.

2.2.3. Driving data
The driving data consists of vehicle speed, steering wheel
angle, and automation level. First, we extract all data that is
relevant for a specific interaction sequence. For each
sequence, we consider the vehicle speed and steering wheel
angle data from two seconds before the first interaction until
tb ¼ 2 s after the last interaction (see Figure 1). This allows
to compute more stable aggregate statistics for very short
sequences. We discard all sequences for which deviations in
the logging frequency or sensor outages were detected.

2.2.4. Final filtering and data description
After individual signal extraction, the dataset contains
98,038 sequences. To improve data quality and control of
confounding factors, we apply strict exclusion criteria as
visualized in Figure 4. We discard all sequences with more
than 41 interactions, which corresponds to the 99th percent-
ile of the distribution of interactions per sequence. We fur-
ther discard all sequences in which the car was at standstill.
We filter these sequences, because we are only interested in
self-regulation while driving. To control for potential dis-
tractions or interactions by the front passenger, we delete all
sequences in which the front passenger seat belt buckle was
latched. We, further, discard all sequences in which the

automation level cannot be unambiguously assigned. This
includes sequences in which the driver selected another
automation level or overwrote the current level by accelerat-
ing or braking. The driving automation can also be deacti-
vated due to external factors like a loss of lane marking or
bad weather conditions. Furthermore, all sequences with a
loss of eye tracking larger than 300ms are deleted. In con-
trast to our previous work (Ebel et al., 2022), we also discard
all sequences during which the driver did not perform a
gaze transition between the center stack touchscreen and the
road. As we are interested in drivers’ self-regulative behav-
ior, we only consider sequences during which such regula-
tion happened. Lastly, all sequences with errors in the speed
or steering wheel angle signal are discarded. The final data-
set contains 31,378 sequences of which 18,449 are manual
driving, 1,542 are ACC driving, and 11,378 are ACCþ LCA
driving.1

2.3. Statistical modeling

As stated in Section 1.5, we investigate how drivers’ tactical
and operational self-regulation changes in response to differ-
ent levels of driving automation and driving contexts. In the
following, we introduce the dependent and independent var-
iables, and the statistical models we use. We define statistical
significance at the level of a ¼ 0:05:

2.3.1. Dependent variables
We chose following dependent variables to model tactical
and operational self-regulation:

2.3.1.1. UI interactions. Current approaches are mostly
investigating tactical self-regulation by comparing the likeli-
hood of a driver engaging in a specific secondary task given
different driving situations. We aim to investigate drivers’
tactical self-regulation in greater detail, such that we can
draw conclusions about the UI design itself. Therefore, we
choose the number of interactions (discrete), the number of
touch gestures (discrete) and the probability of driver interac-
tions with specific UI elements (categorical) as dependent
variables. The different categories of UI elements and touch
gestures are listed in Table 1.

2.3.1.2. Mean glance duration. The mean glance duration is
a continuous variable. It is computed as the sum of the dur-
ation of all glances toward the center stack touchscreen dur-
ing a sequence divided by the total number of glances per
sequence.

2.3.1.3. Long glance. The dichotomous variable long glance
indicates whether a driver glanced at the center stack
touchscreen for more than two seconds. Eyes-off-road glan-
ces longer than two seconds are associated with an increased
crash risk (Klauer et al., 2006). The proportion of such long
glances is an important factor in evaluating drivers’ oper-
ational self-regulation.Figure 4. Data filtering procedure.
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2.3.2. Independent variables
The dependent variables are analyzed with respect to the fol-
lowing independent variables:

2.3.2.1. Automation level. The automation level is a categor-
ical variable with three distinct levels: manual, ACC, and
ACCþ LCA. According to SAE J3016 (On-Road Automated
Driving (ORAD) Committee, 2021), these levels correspond
to Level 0, 1, and 2 of driving automation. The automation
level is constant throughout each sequence.

2.3.2.2. Vehicle speed. The vehicle speed is a categorical vari-
able with three levels: 0 km=h < v � 50 km=h,
50 km=h < v � 100 km=h , v > 100 km=h: It is com-
puted as the mean speed across a sequence.

2.3.2.3. Road curvature. The road curvature is a categorical
variable with two levels: straight or curved. An interaction
sequence is classified as curved if the maximum absolute
steering wheel angle is greater than 50�or if the absolute
mean steering wheel angle is greater than 5�.

2.3.3. Models
To account for the hierarchical data structure and the unbal-
anced study design we use mixed-effects models. Our data
structure is hierarchical because interaction sequences are
nested within trips and many trips occur within specific car
types. Furthermore, not all combinations of the independent
variables are observed in all trips and car types. This results
in an unbalanced study design. However, mixed-effects
models also referred to as multilevel models (Hox, 1998),
are well suited for unbalanced designs and account for
grouping hierarchies (Magezi, 2015). Thus they are well
suited to test our hypotheses.

We performed all our analyses using R Statistical
Software (v4.2.1) (R Core Team, 2022). We used the lme4
package (v.1.1.31) (Bates et al., 2015) to build the multilevel
models, obtained p-values via the lmertest package (v.3.1.3)
(Kuznetsova et al., 2017), and computed the pairwise post-
hoc tests using the emmeans package (v.1.8.2) (Lenth, 2022).
Regression tables were generated using the stargazer package
(v.5.2.3) (Hlavac, 2022).

2.3.3.1. User interaction models. To assess tactical self-regu-
lation, we model the driver’s decision to engage in a particu-
lar task in a particular driving situation. Specifically, we
model the probability of drivers interacting with a particular
UI element and the number of interactions and gestures
drivers perform when interacting with the center stack
touchscreen. To estimate the probability of a driver to
engage with one of the UI elements, we fit one logistic
mixed-effects model with random intercepts for each type of
UI element and type of gestures. In alignment with our pre-
vious work (Ebel et al., 2022), none of the two-way or
three-way interactions were significant or proved to signifi-
cantly improve the predictive performance compared to the
additive model. We therefore omit these interaction effects.

To model the number of interactions and gestures that
drivers perform during an interaction sequence, we fit two
negative binomial mixed-effects models with random inter-
cepts. We use negative binomial models because the number
of interactions is a discrete count value. We could have also
used Poisson models but our tests have shown that they suf-
fered from overdispersion.

For all user interaction models we include automation
level, vehicle speed, and road curvature as fixed effects.
Furthermore, we include the trip during which the sequence
was recorded and the car type as random effect.

2.3.3.2. Glance behavior models. To estimate the mean
glance duration, we fit four linear mixed-effects models with
random intercepts. An exploratory data analysis showed that
the distribution of the mean glance duration is heavily
right-skewed. To satisfy the model assumption of normally
distributed residuals we, therefore, apply a log transform-
ation. In Model 1 we estimate the effect of driving automa-
tion on the mean glance duration across all driving
situations by only selecting the automation level as a fixed
effect. To account for the hierarchical structure of our data
we include the trip during which an interaction sequence
was recorded and the car type as random effects for both
models. In Model 2 we add the vehicle speed and road
curvature as additional fixed effects and allow for interaction
effects. Similar to Model 1, the trip and car type are
included as random effects. To estimate drivers’ long glance
probability, we fit two logistic mixed effect models with ran-
dom intercepts. In Model 3 we select the automation level
as a fixed effect and in Model 4 we add the vehicle speed
and road curvature as fixed effects and model all interac-
tions between the independent variables. The trip and car
type information are, again, entered as random effects.

Visual inspection of residual plots and Q-Q plots of the
final models did not reveal any obvious deviations from
homoscedasticity or normality. We use Satterthwaite’s
degrees of freedom approximation to obtain p-values and
evaluate significances (Luke, 2017). For the post-hoc pair-
wise comparisons we use Tukey’s multiple comparison
method (Tukey, 1949).

3. Results

In the following, we present the results obtained by fitting
the above-introduced models to the 31,378 interaction
sequences. By doing so we can model tactical and oper-
ational self-regulation. The analysis of the model coefficients
and post-hoc tests allow us to quantify how drivers adapt
their multitasking behavior according to changes in speed,
road curvature, and driving automation.

3.1. Tactical self-regulation

3.1.1. Number of touch interactions and touch gestures
Table 2 shows the parameters of the user interaction models.
We modeled the number of touch interactions, tap, drag,
and multitouch gestures per sequence. The results suggest
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that driving automation, vehicle speed, and road
curvature affect the number of touchscreen interactions
and gestures that drivers perform when engaging with the
center stack touchscreen. The influence of the independent
variables is generally similar but differs significantly in mag-
nitude comparing Tap gestures to Drag and Multitouch
gestures.

The b coefficients of the negative binomial model are
given on a logarithmic scale. They can be interpreted as fol-
lows: Keeping everything else constant, an increase of one
level in the predictor variable results in a eb increase of the
dependent variable. Thus, drivers perform e0:11 � 1:12 as
many interactions during ACC driving and e0:16 � 1:17 as
many interactions during ACCþ LCA driving compared to
manual driving. This corresponds to an increase of 12% and
17% respectively. Considering the different gestures that add
up to the number of interactions, the modeling results sug-
gest that, during automated driving, drivers in particular
perform more drag or touch gestures compared to regular
tap gestures. For example, during ACCþ LCA driving the
number of Tap gestures per sequence increases by 7%
whereas the number of Drag and Multitouch gestures
increases by 73% and 60% respectively.

Road curvature also significantly affects the number of
interactions and gestures that drivers perform on the center
stack touchscreen. During curved driving, drivers perform
e�0:17 � 0:84 as many interactions compared to straight
driving. Wheres they only perform 12% less Tap gestures,
the number of Drag and Multitouch gestures reduces by
34% and 28% respectively.

The effect of the vehicle speed on the number of interac-
tions and gestures is in general smaller compared to the
effect of driving automation and road curvature. The results
indicate that drivers do not, or only slightly, adapt their
tap and multitouch behavior in response to changes in
vehicle speed. However, the number of Drag gestures that
drivers perform is significantly higher when driving at
speeds above 50 km/h compared to driving at speeds of
50 km/h and below.

3.1.2. Type of UI elements
Table 3 shows the parameters of the user interaction models
for all UI elements that occur in more than 10% of all
sequences.2 The models were fit to predict the probability
that a driver interacts with a specific UI element given the
automation level, vehicle speed and road curvature. The
results suggest that drivers adapt their interaction behavior
with the center stack touchscreen based on automation sta-
tus, vehicle speed, and road curvature. However, these
effects do significantly differ for different types of UI
elements.

The b coefficients for the independent variables given in
Table 3 represent log-odds ratios. This means that, keeping
everything else constant, a change in the predictor by one
level results in a eb increase or decrease in the odds that the
driver interacts with the respective UI element. Considering
the Map model the coefficients can be interpreted as follows:
During ACCþ LCA driving the odds that a driver performs
a map interaction are e0:48 � 1:62 times as high as the odds
of performing the same interaction in manual driving. On
the other hand, when driving in curved conditions, the odds
that the driver interacts with the map are e�0:26 � 0:77 the
odds of performing a map interaction in straight driving
conditions.

Whereas the effect of ACC isn’t significant for any of the
models, the effect of ACCþ LCA is significant for all
Models except of the Tab and AppIcon models. While driv-
ers are more likely to interact with List, Map, and Button
elements, they are less likely to interact with the Homebar.
The odds to interact with the homebar are e�0:17 � 0:84 the
odds compared to manual driving. These effects are also
shown in Figure 5.

Concerning the effect of vehicle speed, the effect of 50–
100 is only significant for List interactions, suggesting
that drivers perform more list interactions when driving
between 50 km/h and 100 km/h compared to driving at
speeds equal to or below 50 km/h. The effect of 100þ is,
however significant for Tab, List, and Map. Whereas the
odds of drivers interacting with Tab elements are e�0:18 �

Table 2. Negative binomial mixed-effects models describing the number of touchscreen interactions, tap gestures, drag gestures, and multi-
touch gestures during an interaction sequence.

Dependent variable:

Num. interactions Num. tap gestures Num. drag gestures Num. Multitouch Gestures

Intercept 1.74��� (0.01) 1.52��� (0.02) –1.12��� (0.03) –2.77��� (0.09)
Automation level
Manual†

ACC 0.11��� (0.02) 0.07�� (0.03) 0.29��� (0.06) 0.28�� (0.09)
ACCþ LCA 0.16��� (0.01) 0.07��� (0.01) 0.55��� (0.03) 0.47��� (0.05)
Vehicle speed
0–50†

50–100 0.04��� (0.01) 0.03� (0.01) 0.12��� (0.03) 0.03 (0.04)
100þ 0.01 (0.01) –0.01 (0.01) 0.15��� (0.04) 0.04 (0.05)
Road curvature
straight†

curved –0.17��� (0.01) –0.13��� (0.01) –0.42��� (0.04) –0.33��� (0.05)

Akaike Inf. Crit. 173,027.10 163,962.60 69,556.59 53,842.50
Bayesian Inf. Crit. 173,102.30 164,037.80 69,631.77 53,917.68

Note: † indicates the reference group, �p< 0.05; ��p< 0.01; ���p< 0.001. For each model, the intercept and the coefficients describe the
effect of the independent variables. They are shown along with the estimated standard error. The coefficients and standard errors of the
negative binomial mixed-effects model are given on a logarithmic scale.
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0:84 times the odds of performing the same interactions
at speeds between 0 km/h and 50 km/h. In contrast, for
List and Map interactions, the odds are 1.09 and 1.14
times higher.

The effect of road curvature is significant in all models
but the Homebar and Button models. The coefficients sug-
gest that during curved driving, drivers are in general less
likely to interact with the center stack touchscreen. The
odds for a driver to interact with these elements in curved
driving conditions are between 0.77 and 0.91 the odds com-
pared to straight driving.

Across all models, our results suggest that the effect of
ACCþ LCA driving on tactical self-regulation is larger than
the effect of vehicle speed or road curvature. Whereas the

tendencies for ACC driving are similar, the effect proves to
be not significant (p> 0.05 for all models). Furthermore the
effect of ACCþ LCA driving is largest for list and map
interactions and small or even negative for the other UI
elements.

3.2. Operational self-regulation

Operational self-regulation is evaluated by identifying how
drivers adapt their glance behavior. We measure glance
behavior in terms of mean glance duration and long glance
probability. The results of our (generalized) linear mixed-
effects models (see Table 4) suggest that drivers adapt their
glance behavior while interacting with the center stack

Figure 5. Proportion of sequences in which the driver interacted with a respective UI element (a) and performed a specific gesture (b).

Table 3. Generalized linear mixed-effects models describing the probability of the driver interacting with Tab, List, Button, Homebar, or AppIcon UI elements
during an interaction sequence.

Dependent variable:

Tab List Map Button Homebar AppIcon

Intercept –1.60��� (0.05) –0.98��� (0.05) –2.40��� (0.09) –0.52��� (0.04) –0.04 (0.05) –1.37��� (0.05)
Automation Level

Manual†

ACC 0.12 (0.08) 0.06 (0.07) 0.18 (0.10) 0.05 (0.06) –0.01 (0.07) 0.04 (0.08)
ACCþ LCA –0.07 (0.04) 0.25��� (0.04) 0.48��� (0.05) 0.15��� (0.03) –0.17��� (0.04) –4 (0.04)

Vehicle speed
0–50†

50–100 –0.01 (0.04) 0.08� (0.03) 0.07 (0.05) 0.02 (0.03) –0.01 (0.03) 0.06 (0.04)
100þ –0.18��� (0.05) 0.09� (0.04) 0.13� (0.06) –0.04 (0.04) –0.08 (0.04) 0.02 (0.04)

Road curvature
Straight†

Curved –0.10� (0.04) –0.13��� (0.04) –0.26��� (0.05) –0.02 (0.03) –0.03 (0.04) –0.09� (0.04)

Akaike Inf. Crit. 29,284.14 38,230.86 29,078.23 41,130.21 41,482.00 32,765.17
Bayesian Inf. Crit. 29,350.98 38,297.69 29,145.06 41,197.04 41,548.83 32,832.00

Note: † indicates the reference group, �p< 0.05; ��p< 0.01; ���p< 0.001. For each model, the intercept and the coefficients describe the effect of the independ-
ent variables. They are shown along with the estimated standard error. Coefficients and standard errors correspond to log odds ratios.
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touchscreen based on automation status, vehicle speed, and
road curvature.

3.2.1. Mean glance duration
The results of Model 1 as shown in Table 4 suggest that the
effect of ACC and ACCþ LCA on drivers’ mean glance dur-
ation toward the center stack touchscreen is significant
(p< 0.001) compared to manual driving. As the mean glance
duration is measured on a logarithmic scale, the exponent of
models’ coefficients can be interpreted roughly as percent
changes. When ACC is active, drivers’ mean glance duration
increases by e0:10 � 1:11 ¼ 11 %: When ACC and LCA are
both active, drivers’ mean glance duration increases by 36%
compared to manual driving. Post-hoc testing using Tukey’s
pairwise post-hoc tests reveals that the difference between
ACC and ACCþ LCA is also significant. The effects are
shown in Figure 6a. Figure 6 also shows the mean glance
duration for different speed ranges (Figure 6b) and road
curvature (Figure 6c). According to the modeling results
(see Model 5 Table A3 in Appendix A2), drivers’ mean
glance duration decreases by 6% when driving between
50 km/h and 100 km/h and by 8% when driving faster than
100 km/h compared to driving between 0 km/h and 50 km/h.
It needs to be noted, that whereas these differences are stat-
istically significant (p< 0.001) they are not observable in
Figure 6b. This is because most of the correlation in the
data is explained by the combination of fixed and random
effects (trip and car type) rather than by the fixed effect
(vehicle speed) alone. This means that the effect of the
vehicle speed is only significant when taking into account
trip and car type information. However, Figure 6b only
shows the mean glance duration according to the vehicle
speed. Our results further show that most of the variance in

the data is explained by variations in the trip identifier.
Considering that vehicle speeds of 0–50 km/h occur in urban
driving but also in very controlled scenarios in a traffic
jam on the highway, the trip identifier might be a proxy for
different kinds of trips. This also shows that vehicle
speed alone might not be the best indicator for changes in
driving demand.

In addition to Model 1, Model 2 adds vehicle speed, road
curvature, and the accompanying interactions as fixed
effects. In this model, the combination of manual and
straight driving, at speeds between 0� 50 km=h serves as a
reference and all coefficients displayed in Table 4 need to be
interpreted accordingly. Apart from the significant main
effects for ACCþ LCA, 50–100, 100þ, and curved, the inter-
actions between both levels of driving automation and
vehicle speed and the interaction between ACCþ LCA and
curved are significant. Whereas the interaction effects of
ACC and vehicle speed while driving straight are positive,
they are slightly negative for ACCþ LCA and vehicle speed.
This means that the effect of ACCþ LCA decreases slightly
for higher speeds during straight driving whereas the effect
of ACC increases with the speed for straight sequences. This
can also be observed in Figure 7.

Furthermore, we are interested in whether the effect of
ACC and ACCþ LCA driving on drivers’ self-regulation dif-
fers depending on the driving situations. We, therefore, per-
form pairwise post-hoc comparisons as shown in Figure 7.
We adjust p-values based on Tukey’s method for comparing
a family of three estimates.

Drivers’ mean glance duration is significantly higher dur-
ing ACCþ LCA driving compared to manual driving and
ACC driving across all driving situations. During straight
driving the mean glance duration during ACCþ LCA
driving compared to manual driving increases by 47%

Table 4. Mixed-effects models for mean glance duration and long glance probability toward the center stack touchscreen.

Dependent variable:

Mean glance duration Long glance
Linear Generalized linear

Mixed-effects Mixed-effects

Model 1 Model 2 Model 3 Model 4

Constant 7.15��� (0.01) 7.25��� (0.01) –0.25��� (0.05) 0.21��� (0.06)
ACC 0.10��� (0.01) 0.03 (0.04) 0.44��� (0.07) 0.11 (0.19)
ACCþ LCA 0.31��� (0.01) 0.39��� (0.02) 1.29��� (0.04) 1.29��� (0.09)
50–100 –0.11��� (0.01) –0.48��� (0.05)
100þ –0.17��� (0.01) –0.66��� (0.06)
Curved –0.09��� (0.01) –0.55��� (0.06)
ACC:50–100 0.12�� (0.04) 0.39 (0.22)
ACCþ LCA:50–100 –0.04� (0.02) 0.14 (0.10)
ACC:100þ 0.15��� (0.04) 0.68�� (0.21)
ACCþ LCA:100þ –0.08��� (0.02) 0.17 (0.11)
ACC:curved –0.03 (0.06) 0.34 (0.33)
ACCþ LCA:curved –0.15��� (0.04) –0.54�� (0.19)
50–100:curved –0.03 (0.02) –0.02 (0.09)
100þ:curved 0.01 (0.03) –0.35� (0.18)
ACC:50–100:curved –0.07 (0.08) –0.96� (0.43)
ACCþ LCA:50–100:curved 0.07 (0.04) 0.05 (0.23)
ACC:100þ:curved –0.11 (0.10) –0.74 (0.56)
ACCþ LCA:100þ:curved 0.10 (0.06) 0.87�� (0.30)

Akaike Inf. Crit. 42,903.57 42,246.95 38,850.68 38,392.18
Bayesian Inf. Crit. 42,953.69 42,422.38 38,892.45 38,559.26

Note: �p< 0.05; ��p< 0.01; ���p< 0.001. The coefficients and standard errors of the mean glance duration models are given on a logarithmic scale. The coeffi-
cients and standard errors for the long glance model represent log odds. All coefficients are shown along with the estimated standard error.
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(0–50 km/h), 42% (50–100 km/h), and 36% (100þ km/h). A
similar but slightly smaller effect can be observed during
curved driving. Here the mean glance duration increases by
27% (0–50 km/h), 30% (50–100 km/h), and 29%
(100þ km/h).

The effect of ACC driving compared to manual driving
is only significant for straight driving sequences at speeds
between 50 km/h to 100 km/h and at speeds above
100 km/h. For these two conditions, drivers’ mean glance

duration increases by 15% and 19% respectively. During
curved driving no significant effect can be observed for
ACC driving.

3.2.2. Long glance probability
The results of Model 3, as presented in Table 4, suggest that
the level of driving automation significantly affects the prob-
ability that a driver performs a long glance during an

Figure 6. Boxplots of the mean glance duration toward the center stack touchscreen grouped according to the driving automation, vehicle speed, and road curva-
ture. (a) Driving automation. (b) Vehicle speed. (c) Road curvature. Statistically significant differences according to Tukey’s pairwise post-hoc test are indicated as:�p< 0.05; ��p< 0.01; ���p< 0.001.

Figure 7. Boxplots of the mean glance duration toward the center stack touchscreen grouped according to road curvature (left and right half), vehicle speed (com-
bination of three boxplots each), and driving automation (by color). Statistically significant differences according to Tukey’s pairwise post-hoc test are indicated as:�p< 0.05; ��p< 0.01; ���p< 0.001.
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interaction sequence. Both, ACC and ACCþ LCA lead to an
increase in the long glance probability.

The odds that a driver performs a long glance toward the
center stack touchscreen are e0:44 � 1:6 (ACC) and e1:29 �
3:6 (ACCþ LCA) times higher compared to manual driving.
Post-hoc pairwise comparisons also reveal a significant dif-
ference between ACC and ACCþ LCA with the odds being
2.4 times higher (p< 1) in the ACCþ LCA condition. The
results of Model 4 show significant effects of vehicle speed,
road curvature, and various interactions. Comparing the
main effects, we observe that compared to the reference, the
effect of ACCþ LCA is roughly twice as high as the effects
of 50–100, 100þ, or curved. Furthermore, the effect of ACC
driving alone is not significant but various of its interaction
effects are. The model predictions and confidence intervals
are visualized in Figure 8. Post-hoc tests comparing the dif-
ferent levels of driving automation for the different combi-
nations of speed and road curvatures were performed using
Tukey’s multiple comparison method.

For interactions during straight driving at 0–50 km/h we
observe a significant increase (p< 0.001) in the long glance
probability during ACCþ LCA driving compared to man-
ual driving and ACC driving. The difference between man-
ual driving and ACC driving is not significant. However,
when driving at speeds between 50–100 km/h and speeds
above 100 km/h, the long glance probability is significantly
higher in ACC and ACCþ LCA driving compared to man-
ual driving. Similar to the 0–50 km/h condition the long
glance probability during ACCþ LCA driving is also sig-
nificantly higher than during ACC driving.

Considering curved driving conditions, there is no sig-
nificant difference in the long glance probability between

manual and ACC driving across all speed conditions.
However, for curved driving at speeds of 0–50 km/h, we
observe a significant increase in the long glance probability
during ACCþ LCA driving compared to manual driving
(see Figure 8). For speeds of 50–100 km/h and speeds above
100 km/h, the increase in the long glance probability during
ACCþ LCA is significant compared to both, manual driving
and ACC driving. For curved driving, no significant differ-
ence can be observed between manual driving and ACC
driving. We can also observe that the confidence intervals
for all ACC conditions are more widespread compared to
the manual driving and ACCþ LCA driving conditions.

Also shown in Figure 8, is the tendency that the long
glance probability decreases with an increase in vehicle
speed. This is in line with the model coefficients reported
for Model 4 in Table 4. The same holds true for curved
driving. Post-hoc pairwise comparisons show that during
curved driving drivers’ long glance probability decreases sig-
nificantly across all conditions except ACC driving at speeds
0–50 km/h (p¼ 0.5077).

4. Discussion

4.1. The effect of driving automation on tactical self-
regulation

Our findings on drivers’ tactical self-regulation show that
drivers adapt their interactions with the center stack
touchscreen based on the automation level, vehicle speed,
and road curvature (RQ1). Our results show that, drivers
perform more touchscreen interactions per sequence with an
increasing level of driving automation. Whereas speed

Figure 8. Marginplot of the predicted long glance probabilities and accompanying confidence intervals. The plots are grouped according to road curvature (left
and right half), vehicle speed (combination of three boxplots each), and driving automation (by color). Significant results according to Tukey’s pairwise post-hoc
test are indicated as: �p< 0.05; ��p< 0.01; ���p< 0.001.
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influences the number of interactions only slightly, the num-
ber of interactions during curved driving decreases by 16%.
By breaking down interactions into specific touch gestures,
we show that drivers in particular perform more complex
gestures like drag and multitouch gestures during automated
driving. Drivers also perform significantly less drag and
multitouch gestures during curved driving compared to
regular tap gestures. Both findings together suggest that
drivers adapt their behavior to avoid complex touch gestures
in demanding driving situations. They rather engage in such
interactions during times of low driving demand. This is in
line with the findings of Noble et al. (2021) who found that
drivers were more likely to perform high-risk secondary
tasks during automated driving sequences.

Concerning drivers’ interaction with specific UI elements,
we show that during ACCþ LCA driving, drivers interact
particularly more often with lists or maps compared to other
elements like the homebar or AppIcons. A potential explan-
ation for this behavior is that lists and maps are visually
more complex and drivers seem to perform these interac-
tions in less demanding driving situations, e.g., with auto-
mation enabled or while driving straight. In contrast, the
homebar, for example, is easy to access as it is visible on
every screen and always located in the same position. The
probability of drivers interacting with elements located at
the homebar even decreases during ACCþ LCA driving
compared to manual driving. This could be due to many
reasons. One of which may be that during situations of less
driving demand, drivers prefer to use interfaces that allow
for more control. For example, while it’s possible to skip to
the next song or radio station using the skip button on the
homebar, the media app offers a complete overview of avail-
able songs and radio stations. Thus drivers have full control
and can choose whatever they prefer. Whereas we observe
similar trends for interactions during ACC driving, none of
the differences proved to be significant. In our previous
work (Ebel et al., 2022), using parts of the data that we use
in this approach, these differences were statistically signifi-
cant. One reason for this difference could be modifications
in the UI software. Since the data is collected from test
vehicles, the software is regularly updated so that the UI
versions are optimized over time in terms of design, per-
formance, and stability.

Considering drivers’ behavioral adaption of touch ges-
tures and UI elements, it is noticeable that drivers’ self-
regulation of complex interactions is more sensitive to
changes in the driving demand than that of simpler interac-
tions. Meaning that with an increasing driving demand the
number of complex interactions decreases faster compared
to simpler interactions and vice versa. These findings are in
line with previous work (Choudhary & Velaga, 2017;
Morgenstern et al., 2020; Onate-Vega et al., 2020; Oviedo-
Trespalacios et al., 2018; Schneidereit et al., 2017), suggest-
ing that drivers tend to perform more demanding tasks in
less demanding driving situations. In contrast to related
work, which mostly investigates the effects of drivers’ tactical
self-regulation on a task level, we show that these effects

also exist on an interaction level. These new insights can
help inform future UI designs for center stack touchscreens.

4.2. The effect of driving automation on operational
self-regulation

In this study, we show that drivers not only adapt their
glance behavior according to the level of driving automation
(RQ2), vehicle speed, and road curvature but also show that
significant interdependencies between these factors exist
(RQ3). These novel findings suggest that drivers extend the
margins to which they consider it safe to focus on the center
stack touchscreen with an increasing level of driving auto-
mation. Even though drivers are supposed to constantly
supervise the driving automation (On-Road Automated
Driving (ORAD) Committee, 2021), the median glance dur-
ation during touchscreen interactions in ACCþ LCA driving
is 0.59 s longer than in manual driving. In comparison,
Morando et al. (2021) report an average increase of 0.3 s for
glances to the center stack regardless of drivers interacting
with the touchscreen. In line with the findings of Noble
et al. (2021), Gaspar and Carney (2019), and Morando et al.
(2021), we also show that drivers are more likely to perform
glances longer than two seconds when driving automation is
enabled. Whereas Morando et al. (2021) report an increase
in the long glance probability toward the center stack
touchscreen between manual and level 2 driving of 425%,
our results are similar to that of our previous study (Ebel
et al., 2022) and suggest an increase of 263%. While the
trend is similar, the absolute difference is probably due to
differences in the driving environments, the systems under
test or the data acquisition.

We also show that during ACCþ LCA driving, drivers
significantly increase in their mean glance duration toward
the center stack touchscreen. This effect is statistically sig-
nificant across all driving conditions and in line with the
model explanations provided by Ebel et al. (2023). In con-
trast, Noble et al. (2021) and Morando et al. (2019) found
no significant differences in the mean off-road glance dur-
ation for ACC or LCA driving compared to manual driving.
There may be two reasons for this: First, the amount of data
we leverage in this study is larger. Second, our eye tracker
explicitly detects glances toward the center stack touchscreen
that we then map to UI interactions. In other studies
(Morando et al., 2019; Noble et al., 2021; Risteska et al.,
2021; Yang et al., 2021), authors could not differentiate
between general off-path glances, which might still be driv-
ing-related, and distraction-related off-path glances. This,
inevitably, increases the number of false positives, making it
harder to obtain significant results. Considering drivers self-
regulation during ACC only driving, drivers increase their
glance duration only for straight driving sequences and at
speeds between 50–100 km/h and speeds above 100 km/h.
For all other driving situations, the effect is not significant.
This suggests that drivers trust the ACCþ LCA system to
take over at least parts of the driving task in a wide variety
of driving situations. On the other hand, they only make use
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of the benefits of the ACC system in relatively controlled
driving situations.

4.3. Limitations and future work

Naturalistic driving studies allow us to observe drivers in
their natural and diverse driving environment. Driving
simulator studies or test track studies, in contrast, suffer
from an instruction effect because participants need to per-
form specific predefined tasks (Carsten et al., 2017).
Furthermore, by leveraging production systems, we collect a
large amount of data without the need for, potentially,
error-prone manual labeling. However, certain limitations
should be considered when interpreting the results.

All cars that contributed to the data collection are
company internal test cars. Whereas, they are subject to
various testing procedures but also for transfer and leisure
rides of employees. Yet, the results of our data analysis do
not indicate that specific UI stress tests have been con-
ducted while driving. Furthermore, we argue that even
during certain test protocols to evaluate driving-related
functions, the incentive to interact with the IVISs does
not differ from real-world driver behavior. Nonetheless, it
is important to note that the software in these test cars is
frequently updated and improved. This applies to the UI
software as it does to the camera or Advanced Driver
Assistance System (ADAS) software. This can lead to
changes over time in the way drivers interact with the UI
or how they self-regulate their behavior with regard to the
driving demand. Compared to our previous work (Ebel
et al., 2022), we can observe differences in the glance and
interaction behavior. The differences suggest that drivers’
self-regulative behavior is sensitive to small changes in the
UI or ADAS capabilities. To better understand this effect,
similar naturalistic driving studies that compare various
IVISs and ADASs are needed.

Another limitation that is that drivers need to be consid-
ered expert users. They are familiar with the cars and add-
itionally obtained a prototype driver’s license. Yet, the effect
this might have is not clear. Whereas more experienced
drivers tend to distribute their visual attention more
adequately (Wikman et al., 1998), Naujoks et al. (2016)
report that drivers who are familiar with driving assistance
systems are more likely to engage in secondary tasks during
assisted driving compared to drivers with no experience. In
general, the glance duration distribution is roughly similar
to those reported in related studies (Gaspar & Carney, 2019;
Morando et al., 2019; Noble et al., 2021).

Due to data privacy regulations, we cannot differentiate
between individual drivers. We can only differentiate
between different trips and car types. Considering that
more than 100 cars, with even more individual drivers, con-
tributed to the data collection, the risk of overfitting to
particular drivers is small. However, it is important to
consider that only employees contributed to the data collec-
tion. For this reason, the results are likely biased toward
mid-age drivers.

As we cannot differentiate between individual drivers, we
are not able to show personal differences in drivers’ self-
regulative behavior. However, most of the models fitted
(e.g., Model 2 and Model 4 in Appendix A2) in this study
have a significantly smaller Marginal R2 compared to the
Conditional R2 (Nakagawa & Schielzeth, 2013). This indi-
cates that most of the covariance in the data is explained by
the fixed and random effects together rather than by the
fixed effects only. Even though we only incorporate the trip
(n¼ 10,402) and car type (n¼ 138) as random effects these
difference in the Marginal R2 and Conditional R2 suggest
that trip-related or personal differences might influence self-
regulation. This in line with previous research, but quantify-
ing this effect based on naturalistic data could be the logical
next step. The effect of task priority on self-regulation (J. D.
Lee, 2014) is another factor that is not currently considered,
but may provide insights that can aid the design of IVISs.

This work could be further improved by incorporating
more features that describe the driving demand. Currently,
we do not consider environmental factors such as weather
and daylight. Speed and curvature may also not be sufficient
to distinguish between different driving situations. Low
speed and straight driving might be typical for traffic jam
behavior (very controlled and easy environment), but also
for city driving (very uncontrolled and difficult environ-
ment). Including these features could help to provide a
more holistic picture of drivers’ behavioral adaptations to
driving demands.

5. Conclusion

We present the first naturalistic driving study to investigate
tactical and operational self-regulation of driver interactions
with center stack touchscreens. Understanding self-regula-
tion is key to understanding the effects of automation and
assistance functions on driver distraction and driving safety.
Furthermore, knowledge about self-regulation may help
design more user-centered and context-aware IVISs. The
key strengths of our study over the state-of-the-art are two-
fold: (1) The large amount of naturalistic data, compared to
related approaches (Morando et al., 2019; Naujoks et al.,
2016; Noble et al., 2021), allows us to investigate drivers’
tactical and operational self-regulation in greater detail con-
cerning the driving demand. (2) We evaluate self-regulation
specifically during interactions with the center stack
touchscreen by combining driving data, UI interactions,
touch gestures, and explicit glances toward the center stack
touchscreen. That makes this the first naturalistic driving
study to show self-regulation based on the analysis of
touchscreen interactions.

Our modeling results show that driving automation has a
stronger effect on self-regulation than vehicle speed or road
curvature. Drivers interact more with the IVIS when ACC
or ACCþ LCA is enabled, use more complex UI elements,
and perform more complex touch gestures. Even though
driving assistance functions up to level 2 still demand the
driver to have full control over the car, we observe 36%
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longer glances toward the center stack touchscreen when
ACCþ LCA is active.

Further research is needed, but based on the assumption
that drivers kept the driving similarly safe throughout all
conditions, fixed limits for acceptable demand as reported in
the NHTSA Driver Distraction Guidelines (National Center
for Statistics & Analysis, 2014) need to be adjusted accord-
ing to different levels of driving automation and driving
demands.

Notes

1. The dataset statistics are given in Appendix A1.
2. The results of the other models are provided in

Appendix A2.
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Appendix A1. Dataset summary statistics

Table A1. Summary statistics over all 31,378 interaction sequences.

Statistic Mean St. Dev. Min Pctl(25) Median Pctl(75) Max

Number of interactions 6.515 5.530 1 3 5 8 41
Number of tap gestures 4.988 4.913 0 2 4 6 40
Number of drag gestures 0.789 1.826 0 0 0 1 32
Number of multitouch gestures 0.721 1.992 0 0 0 0 29
Mean glance duration center stack in s 1.72 1.23 0.12 1.03 1.40 2.00 34.08
Number of glances per sequence 6.068 5.106 1 3 5 8 59
Number of long glances 1.322 1.875 0 0 1 2 22
Total glance duration in s 9.70 9.26 0.12 3.96 7.08 12.16 262.42
Average speed in km/h 77.57 35.95 0.37 48.33 77.71 104.61 242.26
Number of Keyboard interactions 0.330 2.018 0 0 0 0 37
Number of Tab interactions 0.314 1.081 0 0 0 0 35
Number of List interactions 0.852 2.097 0 0 0 1 41
Number of Map interactions 1.394 3.581 0 0 0 1 40
Number of ControlBar interactions 0.020 0.165 0 0 0 0 4
Number of Button interactions 0.862 1.912 0 0 0 1 36
Number of Homebar interactions 1.126 2.341 0 0 0 1 36
Number of ClickGuard interactions 0.063 0.343 0 0 0 0 14
Number of CoverFlow interactions 0.107 0.806 0 0 0 0 27
Number of PopUp interactions 0.019 0.176 0 0 0 0 9
Number of AppIcon interactions 0.286 0.644 0 0 0 0 14
Number of Slider interactions 0.062 0.481 0 0 0 0 22
Number of Other interactions 0.833 1.626 0 0 0 1 37
Number of Unknown interactions 0.030 0.347 0 0 0 0 23
Number of RemoteUI interactions 0.215 1.413 0 0 0 0 40

Figure A1. Calibration plot of Model 4 (generalized linear mixed-effects model).
Marginal R2 ¼ 0:099, Conditional R2 ¼ 0:347:
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Appendix A2. Models

Figure A2. True values of the mean glance duration plotted against the predic-
tions of Model 2 (linear mixed-effects model). All values are given on a logarithmic
scale. Marginal R2 ¼ 0:091, Conditional R2 ¼ 0:441:

Table A2. Mixed-effects models for the interaction probability with Keyboard, CoverFlow, Slider, RemoteUI, ControlBar, Other, and Unknown UI elements.

Dependent variable:

Keyboard CoverFlow Slider RemoteUI ControlBar Other
conv. Error

Intercept –8.46��� (0.19) –9.35��� (0.22) –8.88��� (1) –10.33��� (0.23) –10.37��� (0.30) –0.40��� (0.03)
ACC 0.07 (0.26) 0.43 (0.30) 0.02��� (1) –0.01 (0.30) 0.31 (0.34) 0.06 (0.07)
ACCþ LKA 0.21 (0.14) 0.39� (0.16) 0.18 (0.12) –0.31� (0.15) 0.14 (0.22) –0.17��� (0.03)
50–100 –0.19 (0.12) –0.13 (0.14) 0.24��� (1) –0.07 (0.15) 0.32 (0.18) 0.07� (0.03)
100þ –0.32� (0.14) –0.31 (0.16) 0.23� (0.11) 0.05 (0.17) 0.37 (0.22) 0.09� (0.04)
curved –0.15 (0.13) –0.38� (0.16) –0.33� (0.15) –0.14 (0.15) –0.36 (0.20) –0.06 (0.04)

Akaike Inf. Crit. 8,886.07 6,982.70 7,282.68 6,270.20 3,965.26 41,098.95
Bayesian Inf. Crit. 8,944.55 7,041.17 7,341.16 6,328.68 4,023.74 41,157.43

Note: In contrast to the models presented in the article we did not include the car type as random effect since it led to a singularity warning. This warning is
often associated with an overfitted model as the random effect structure might be too complex to be supported by the data. This in turn might be due to the
small amount of interaction with these UI elements. conv. error: Model failed to converge, �p< 0.05; ��p< 0.01; ���p< 0.001.

Table A3. Mixed effects models for the mean glance duration according to
speed and road curvature.

Dependent variable:

Mean glance duration

Model 5 Model 6

Constant 7.28��� (0.02) 7.27��� (0.02)
50–100 –0.06��� (0.01)
100þ –0.07��� (0.01)
curved –0.14��� (0.01)

Akaike Inf. Crit. 44,429.86 44,178.02
Bayesian Inf. Crit. 44,479.98 44,219.78

Note: ���p< 0.001.
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